

l

r \^.

handbook
willi npin

Notice

CP/M is a registered trademark of Digital Research.
MP/M is a trademark of Digital Research.

NAD, QSORT are registered trademarks of Structured Systems Group Inc.
WORDMASTER, WORDSTAR are trademarks of Micropro International Corporation.
MDS is a registered trademark of Intel Corporation.
Z8000, Z80 are registered trademarks of Zilog Inc.
TRS80 is a registered trademark of Tandy Corporation.
APPLE is a registered trademark of Apple Inc.
PET and CBM are registered trademarks of Commodore Inc.

Cover Design and Graphics by Daniel Le Noury

Technical Illustrations by J. Trujillo Smith

Every effort has been made to supply complete and accurate information . However,
Sybex assumes no responsibility for its use , nor for any infringements of patents or other
rights of third parties which would result.

Copyright © 1980 SYBEX Inc. world rights reserved. No part of this publication
may be stored in retrieval system, transmitted , or reproduced in any way, including but
not limited to photocopy , photograph , magnetic or other record , without the prior
agreement and written permission of the publisher.

Library of Congress Card Number: 80-51415
ISBN 0-89588-048-2
Printed in the United States of America
Printing 10987654321

Acknowledgements

I would like to acknowledge the contributions of the many people
who have provided valuable assistance and suggestions toward improving
the completeness of this book. Tony Bove painstakingly checked pro-
gram examples and wrote many of the initial command descriptions.
David Haverty of the Computer Center in Berkeley made valuable
comments for improvements. Dorothy Kildall of Digital Research
continuously supported this effort by providing early information on
new developments . Finally , all of the in-house users at Sybex determined
the need for many of the practical explanations provided throughout
the book . The author will be grateful for any further improvements
suggested by CP/M users.

Contents

Preface ... xi

1 INTRODUCTION TO CP/M AND MP/M 1

Introduction. Basic Definitions. The Computer System. Bringing Up

CP/M. Using CP/M. Running a Program. Creating a File with

ED. Manipulating Files. Renaming Files (REN). Loading a New

Diskette (Performing a Warm Boot). Copying an Entire Diskette.

Printing the File. Erasing Files. Understanding CP/M. User Checklist.

Summary.

2 CP/M AND MP/M FACILITIES 47

Introduction. Commands. Built-In vs. Transient Commands. Filenames.

Blanks. Built-In Commands. The Transient Commands. Submitting a

File of Commands for Execution (SUBMIT and XSUB). Assembling

(ASM), Loading (LOAD), and Dumping (DUMP) Programs. Executing,

Debugging (DDT), and Saving (SA VE) Programs. CP/M Version 2.2

and MP/M. Summary.

3 HANDLING FILES WITH PIP 109

Introduction . Understanding PIP. Copying Files. Copying to Devices.

Special Copy Operations. Parameters in Copy Operations . Enhance-

ments in CP/M Version 2.2. Summary.

4 USING THE EDITOR ... 145

Introduction. What Is an Editor Program? ED, the Editor. The 'CP'
(Character Pointer) and Line Numbers. What ED Does to Your Text File.

File Management. Accidental Termination. A Session with the Editor.

Displaying Text in the Buffer. Saving the File and Ending the ED Session.

Appending Lines to the Buffer (Editing an Existing File). Moving

Around in the Buffer. Changing, Inserting and Deleting Text. Finding

and Substituting Text. Writing Lines Out to the File. Advanced ED

Operations. ED's Error Conditions. Summary.

V

5 INSIDE CP/M (AND MP/ M) 181

Introduction . An Overview of CP/M's Operation . Detailed Descrip-
tion . FDOS and CCP Operations. Installing and Altering CP/M. Re-
configuring (Adjusting Memory Size) Using MOVCPM. A CP/M
Alteration Example. A Menu System. MP/M. Summary.

6 REFERENCE GUIDE TO CP/M AND MP/M
COMMANDS AND PROGRAMS 217

Introduction. ABORT. ASM. ATTACH. CONSOLE. DDT. DIR.

DSKRESET. DUMP. ED. ERA. ERAQ. GENHEX. GENMOD.

GENSYS. LOAD. MOVCPM. MPMLDR. MPMSTAT. PIP.

PRLCOM. REN SAVE. SCHED. SPOOL. STAT. STOPSPLR.

SUBMIT. SYSGEN. TOD. TYPE. USER. XSUB.

7 PRACTICAL HINTS .. 273

Introduction . User Discipline . Handling Diskettes. The Printer . Listings.
Files. Useful Programs. Stop. Miscellaneous Hints. The Seven Com-
mandments. After the System Fails.

8 THE FUTURE ... 281

History of CP/M. CP/M and Other Operating Systems. Evolution.
Conclusion.

Appendices

A COMMON CP/M ERROR MESSAGES 285

B HEXADECIMAL CONVERSION TABLE 287

C ASCII CONVERSION TABLE 289

D ED CONTROL CHARACTERS 291

E ED COMMANDS ... 293

F PIP DEVICE NAMES ... 297

G PIP KEYWORDS ... 299

H PIP PARAMETERS ... 301

vi

I

J

K

L

M

N

O

CP/M (AND MP/M) COMMANDS 305

COMMAND EDITING CONTROLS 307

CP/M EXTENSION TYPES 309

SUPPLIES (CHECKLIST) .. 311

COMPUTER ROOM ORGANIZATION
(CHECKLIST) ... 313

FAILURE CHECKLIST .. 315

BASIC TROUBLESHOOTING RULES 317

vii

Illustrations

Figure 1.1: A Typical Computer ... 2

Figure 1.2: Mini-Floppy and Regular Floppy: Dimensions 8

Figure 1.3: Comparing a Mini and a Regular Floppy9

Figure 1.4: The Slot Allows the Read/Write Head to Contact the Disk 9

Figure 1.5: Tracks and Sectors ... 10

Figure 1.6: 8-inch Diskette is Equipped With Write-Protect Notch 11

Figure 1.7: Inserting the Diskette Into Drive 1 (SOL) 12

Figure 1.8: Inserting the Diskette ..15

Figure 1.9: Turning Cromemco On _ 16

Figure 1.10: The Keyboard of the Terminal .. 16

Figure 1.11: The SOL System ..18

Figure 1.12: Inserting a Diskette in A ... 18

Figure 1.13: Control C Causes a Warm Boot ... 21

Figure 1.14: Inserting a Diskette in B ... 26

Figure 2.1: Control Characters ...49-50

Figure 2.2: Summary of Editing Controls ...51

Figure 2.3: CP/M Commands 52-55

Figure 2.4: "Computer, erase the file SAMPLE.TLB................................ 56

Figure 2.5: A Typical System Diskette Directory57

Figure 2.6: Extension Types ..59

Figure 2.7: The Assembly Process ... 81

Figure 2.8: Assembly Errors .. 84

Figure 2.9: Loading the Object Code .. 84

Figure 2.10: Round Robin Scheduling ..91

Figure 2.11: A Four-Level Priority List ...92

Figure 2.12: A New Process is Entered at Priority 0 93

Figure 2.13: File Placement in User Areas ..95

Figure 3.1: The Elements of a System ..122

Figure 3.2: Transfers Through Memory .. 123

Figure 3.3: A File is Transferred to the Console 125

Figure 3.4: LST: = B:SIMPLE.BAK ... 125

Figure 3.5: PROG.BAS = RDR :..125

Figure 3.6: PUN: = PROG.BAS .. 126

Figure 3.7: ASCII Conversion Table ... 129

Figure 3.8: Hexadecimal Conversion Table .. 130

Figure 4.1: ED's Buffer ..147

Figure 4.2: Text Being Processed ... 148

Figure 4.3: A Sample File is in the Buffer .. 149

Figure 4.4: The Append Command is in A ... 150

Figure 4.5: Appending Three More Lines ..151

Figure 4.6: Adding Two New Lines From the Keyboard 151

Figure 4.7: Putting Lines Into the Buffer .. 152

ix

Figure 4 . 8: Saving the Buffer on the Disk .. 152
Figure 4 . 9: Appending 20 lines to the Buffer .. 153

Figure 4 . 10: Finishing an Edit Session ... 154
Figure 4 . 11: The CP is at the End of the Buffer 158
Figure 4 . 12: Showing the CP's Position ... 158

Figure 4.13 : Displaying Text ... 159

Figure 4 . 14: Moving the Cursor .. 159

Figure 4 . 15: ED's Error Messages .. 178

Figure 5 . 1: Flow of Control ... 182

Figure 5 . 2: CP/M Memory Map .. 184
Figure 5 . 3: Standard CP/M Map ... 185

Figure 5.4: Disk Space Utilization .. 186

Figure 5.5 : The File Control Block ... 187

Figure 5 . 6: Entry to Actual fbase Address ... 191

Figure 5 . 7: Field Positions Information .. 194

Figure 5 . 8: Displaying the Contents of Memory 203

Figure 5 . 9: Memory Shows the Line Inserted .. 205

X

Preface

This book is intended to teach you how to use CP/M and its
resources. No prior computer knowledge is assumed. What is assumed,
however, is that you have access to a computer system equipped with
CP/M.

CP/M has become a standard operating system for microcomputers.
Most users of microcomputer-based systems will at some time utilize
CP/M. Depending upon the application programs that they execute on
the computer, they will use part or all of the resources provided by CP/M.
For example, a data entry clerk typing data into an accounts receivable
program will normally only need to know how to activate the re-
quired accounts receivable program, and how to recover from errors.
On the other hand, an experienced programmer might want to install a
new permanent program on the computer system or perform sophisti-
cated editing functions on files. This book has been structured to satisfy
this wide variety of needs.

Chapter 1 introduces you to CP/M. It takes you by the hand and
shows you how to turn the computer on, and how to perform all the
usual operations on files, including diskette duplication. After reading
Chapter 1, you will know how to operate your CP/M-equipped com-
puter system and how to perform the following functions: create a file,
copy a file, handle diskettes, copy diskettes, as well as use several im-
portant commands operating on files. This knowledge will be sufficient
to allow you to execute known application programs safely. In fact, you
will probably be surprised by the short amount of time that it takes to
become proficient at using the computer through CP/M.

After learning the basics of CP/M you will probably want to know
more. Chapter 2 is a reference chapter on CP/M, to be read and then
referred to as specific information is needed. It presents an overall,
comprehensive description of all the CP/M commands, with the ex-
ception of PIP, which is described in Chapter 3. Although it is not nec-
essary for most users to understand all of the options available on
CP/M, a general knowledge will improve the effectiveness of any
CP/M user.

A thorough understanding of the file transfer program PIP is in-
dispensable to the experienced CP/M user. Chapter 3 describes PIP in

Xi

complete detail and shows how to merge files, list multiple files on the
printer, and use the numerous other facilities available.

Chapter 4 takes you through a sample session with the editor pro-
gram, `ED'. ED is a powerful text processing program that can be used
to conveniently create or manipulate text files. Although ED is com-
plex, it is relatively easy to learn.

By this point in the book, you will have learned about all of the
capabilities of CP/M in detail, and you may now be interested in know-
ing how CP/M operates. Chapter 5 takes you inside CP/M and ex-
plains its internal operation. This knowledge is not necessary in order to
use CP/M, but is required if you intend to modify it.

Chapter 6 uses a convenient format to summarize all of the com-
mands and symbols used by CP/M (detailed in Chapter 2). Chapter 6
will be an essential reference for the user of CP/M.

Chapter 7 presents an important collection of practical hints. Once
you have become familiar with CP/M, and are using the computer fre-
quently, there are important guidelines that should be followed.
Chapter 7 makes recommendations on how to handle as well as prevent
practical problems that can arise when using CP/M. This chapter
should be considered essential reading for everyone.

Finally, Chapter 8 presents a brief historical overview of CP/M and
its future.

Many useful reference tables are presented in the Appendices. They
should be consulted after you have read the book. These tables include
the common binary codes, error messages, symbols and commands
provided by CP/M, ED, and PIP.

CP/M was designed to make microcomputers easy to use. CP/M
Handbook With MP/M should make CP/M easy for you to use.

This book covers CP/M and its various versions, including CP/M
1.4 and CP/M 2.2, and the new multi-user operating system called
MP/M. It is also applicable to CP/M-compatible operating systems,
such as Cromemco's CDOS.

xii

1
INTRODUCTION TO
CP/M AND MP/M

INTRODUCTION

The purpose of this chapter is to teach you how to perform basic
operations on your computer system using CP/M. No prior knowledge
of computers is required. You will first learn the vocabulary and the
definitions related to the computer's operation. You will then learn
how to turn the computer on, insert your System Diskette, and bring
CP/M up. You will learn about files; how to create them, give them
names, and make copies of a file or a complete diskette. You will learn
to use the keyboard as well as the screen and the printer to manipulate,
display or print the contents of a file. By the end of this chapter, you will
have learned how to use all of the most important CP/M commands.

BASIC DEFINITIONS

A typical computer system is shown in Figure I.I. This system in-
cludes the computer, the disk drives, the printer, and the CRT terminal.
To use the computer you should sit at the terminal and type on the
keyboard. Messages will then be displayed on the screen of the CRT ter-
minal . By using the printer, you will also be able to print text, if you
wish. The programs to be executed by the computer will be stored on
diskettes inserted into one of the disk drives.

In this chapter you will learn, step -by-step, how to perform all of the
operations requried to use your computer system.

THE COMPUTER SYSTEM

A computer system consists of hardware and software components.
The hardware refers to the physical components of a system (bolts,
nuts, wires, etc.). Software refers to the programs and the files.

1

Figure 1.1: A Typical Computer

The Hardware Elements

The hardware elements of a typical small computer (the computer,
the keyboard and the CRT display, the printer and one or more disk
drives) appear in Figure 1.1. Additional hardware elements, such as a
tape recorder, and other devices (a microphone, a card reader, etc.)
may also be added to a computer system.

The Computer

The. computer itself is typically housed in a cabinet . Because most ap-
plications of CP/M usually require a large amount of memory (48K or
64K) and two disk drives , many manufacturers enclose the computer
and the two disk drives in the same box. This is the case in Figure 1.1.
With the TRS80 , the Exidy , and the older SOL , the microcomputer is
enclosed in the same box as the keyboard.

The computer ' s role is to manipulate information . Its operation is
controlled by programs installed in the computer ' s memory . The pur-
pose of the computer 's memory is to store information, either pro-

2 THE CP/M HANDBOOK WITH MP/M

grams, or data. Its size is measured in words (8-bit bytes for an 8-bit
microcomputer), in multiples of 1 K, where 1 K = 1024. Typical sizes are
16K, 32K, 48K, and 64K.

With the present technology, most of the computer's memory is
volatile, and its contents will disappear when the computer is turned
off. In other words, every time a program is to be executed, it must be
loaded from the disk into the computer's memory. This operation is
performed automatically by CP/M.

The Disks

Because the computer's memory (called "RAM" for Random Ac-
cess Memory) is volatile, i.e., it does not retain information once power
is no longer applied, a permanent storage device is required for every
computer. Disk drives, either floppy or hard, are used for that purpose
on small computers. All information can be preserved on this medium,
including programs, files (collections of text or data), and a copy of the
CP/M program itself.

The CRT Terminal (Display and Keyboard)

The CRT terminal consists of a combination of a CRT display (a
television-like screen) and a keyboard. It is the means by which a person
can directly communicate with the computer system. The keyboard is
used by the user to type characters that are interpreted by the program
in execution on the computer. The CRT screen displays information to
the user. Unfortunately, like the internal memory of the computer, the
CRT is volatile, i.e., the information is displayed temporarily on the
screen and then disappears.

In most business systems, a classic CRT terminal is used, which com-
bines a keyboard with a CRT display. In cases where the keyboard is
already incorporated into the computer's packaging, a separate (or in-
tegrated) video monitor is added.

The Printer

The printer is a hard-copy device. It is the printer's role to provide a
permanent printout of any information requested by the user. The
printer is used to list programs and documents.

Now that we have become familiar with the hardware components of
a system, let us define the software components.

INTRODUCTION TO CP/M AND MP/M 3

The Software Components

The term "software components" refers to the program (a sequence
of instructions) and the data. To be more specific, a program is a se-
quence of instructions that, once installed into the computer's memory,
will direct the computer to perform specific actions. Data are collec-
tions of characters or numbers manipulated by programs. Programs
and data are logically called files once they have been assigned a name
by the user. Later in this book you will learn how to use a variety of pro-
grams, and how to create or manipulate common types of files.

CP/M itself is a special program, or rather, collection of programs
usually supplied on a diskette. The programs used in this book will be
stored on diskettes.

There are two essential classes of software: system software and ap-
plications software. The system software is the software usually provid-
ed with the computer system which is required for its operation. It in-
cludes CP/M as well as a number of "utility" programs, such as PIP
and ED, that will be described in detail later.

The applications software is the collection of programs that a user
can use to perform specific tasks. Examples of applications software in-
clude a mailing list program, an inventory program, a general ledger
program, or a word processing program.

Defining CP/M and MP/M

CP/M stands for Control Program for Microprocessors. MP/M

stands for Multiprogramming Control Program for Microprocessors.
CP/M and MP/M are both operating systems. The purpose of CP/M
or any operating system is to execute user commands and allow the user
to conveniently use all of the hardware resources provided by the com-
puter. For example, it will send text to the printer, read and process in-
formation from the keyboard, and display information on the CRT
(display screen). In addition, the CP/M operating system will perform
internal chores, such as managing the disk space, or managing the com-
puter's memory space.

Once installed in the computer's memory, CP/M becomes an in-
tegral part of the complete system, and is often referred to as "the
system." (It should be noted that in computer jargon "the system" may
also be used to describe the set of hardware components, i.e., the com-
puter, the printer, the CRT and the disk drives.) In this text, when refer-
ring exclusively to programs, "the system" refers to CP/M - the
operating system.

4 THE CP/M HANDBOOK WITH MP/M

System Operation

The operation of the complete system will become clear as we use it.
The essential function of the CP/M operating system is to allow the
user to conveniently use the computer system's resources. As soon as
the computer is turned on, the operating system is installed inside the
computer's memory and starts monitoring the keyboard for com-
mands. The user is then able to enter into dialogue with CP/M and to
activate the desired applications program. Once an applications pro-
gram terminates, CP/M takes over again and waits for the next com-
mand. CP/M could be viewed as an ever-present servant ready to obey
commands and manage the computer's resources, as long as the user is
not in the midst of executing an applications program. Specifically,
once an applications program (e.g., a mailing list program) is executed,
the applications program takes over the memory of the computer, and
all further dialogue is with that program. However, when the applica-
tions program terminates, CP/M is activated again, and is ready to
accept new commands.

In summary, CP/M is a collection of programs which reside on a
diskette called the system diskette. The resident monitor or the
bootstrap loader (present in every computer) will usually load it
automatically from the diskette once the system is turned on. (Occa-
sionally, manual intervention by the user is required.)

CP/M provides specific commands for transferring information be-
tween the devices connected to the computer system, executing pro-
grams and manipulating files conveniently. Like any good operating
system, CP/M provides many additional features as well . The most im-
portant features will be described in this chapter and comprehensive
descriptions of all of the features will be provided in following chapters.

CP/M, MP/M and Other Versions

CP/M and MP/M

A number of versions of CP/M have successively been released. This
book first presents the standard features of CP/M up to version 1.4,
and then points out the enhancements available with later versions,
such as CP/M version 2.2 and MP/M version 2.1. Several other ver-
sions of CP/M have also been released by other manufacturers as
"CP/M Enhancements." For example, Cromemco's CDOS is
"CP/M-compatible" and provides added facilities. All of CP/M's
features described in this book are applicable to these versions. In the

I

INTRODUCTION TO CP/M AND MP/M 5

case of Cromemco's CDOS, specific comments are presented in the
relevant sections.

The essential difference between CP/M and MP/M is that CP/M has
been designed as a single-user operating system. MP/M, on the other
hand, is a multi-user operating sytem that allows several terminals to be
used simultaneously on a computer system. MP/M provides all of
CP/M's facilities and more. The additional facilities provided by
MP/M will be described systematically in every chapter.

Cromemco's CDOS

Cromemco's CDOS is claimed to be compatible with CP/M version
1.3. In other words, CP/M version 1.3 commands are embedded into
CDOS. However, the reverse is not true: programs relying on CDOS'
facilities might not run under CP/M. In addition, CDOS provides a
number of additional facilities when compared to CP/M. CDOS uses a
file system that is identical to CP/M so any diskette which may be read
by CP/M may also be read by CDOS. There are minor differences: the
system prompt used by CDOS is a period instead of a > sign. Also, the
special CONPROC (Console Processor) program must be present on
all system diskettes as a file. In CDOS, another version of the PIP pro-
gram is provided under the name XFER. It operates essentially like PIP
with a few enhancements. However, PIP can also be executed under
CDOS.

The primary practical difference is that some control characters that
have no meaning to CP/M are interpreted by CDOS and may not be
used by application programs written to run under CP/M. Typically,
the program will still run, but it may not be possible to use some of the
control characters.

Other Programs

Strictly speaking, the CP/M operating system includes only those
programs required to dialogue with the computer and manage the file
system. However, the standard version of CP/M also comes with
several standard utility programs such as PIP and ED (described in
detail in later chapters).

Naturally, every user of the computer system will execute a number
of specific application programs. Several specific examples will be pro-
vided to demonstrate how such programs are executed under CP/M,
and relevant definitions will be presented. Because most application

6 THE CP/M HANDBOOK WITH MP/M

programs assume a specific file system organization, it is important to
remember that application programs intended to run on your system
have to be CP /M-compatible . Also, if they are written in a specific
language such as BASIC, they will require a language interpreter such
as a BASIC interpreter (discussed later in this chapter).

We have now learned all of the basic definitions . Let us turn on our
computer and communicate with CP/M.

O

BRINGING UP CP/M

Approaching the Computer

The best way to overcome a fear of computers is to learn how to turn
them ON, and how to turn them OFF, without damaging anything. If
you turn on the computer properly, the operating system takes over and
waits for you to type a command (i.e., explain your presence and re-
quest something). If you fail to say anything coherent or give the wrong
instructions, the operating system will ask you to repeat your request.

INTRODUCTION TO CP/M AND MP/M 7

The cardboard square (shown in Figure 1.4) contains a soft diskette
of mylar coated with a magnetic oxide. When in use, the diskette rotates
at high speed inside the cardboard. The central hole allows the disk
drive motor to rotate the diskette. The long opening (shown in the
figure) allows the read/write head to come in contact with the disk sur-
face and to read or write information on it in the same way that a tape
recorder operates. Information is recorded along concentric circles on

the disk, called tracks. Each track is logically divided into sectors by

CP/M (see Figure 1.5).

ROTATION

SECTOR n

Figure 1.5: Tracks and Sectors

Diskettes are often - but not always - equipped with a write-

protect notch. With a standard 8 inch diskette, the notch is covered by a
piece of aluminized paper. If this sticker is removed, the notch is ex-
posed and the disk drive is no longer able to write on the disk.

10 THE CP/M HANDBOOK WITH MP/M

Figure 1.6: 3-inch Diskette Equipped with Write-Protect Notch

The opposite is true with mini-diskettes (5 inch). The aluminized
paper must be removed in order to write on the disk. Once it is posi-
tioned over the notch, one can only read. This feature is used to protect
important information. For example, master diskettes, which are saved
and stored away are normally write-protected. However, you must
specify this option when buying diskettes.

Handling Diskettes

Always handle diskettes with care. Do not touch the exposed areas.
Do not contaminate them with dust, or scratch them. Also, do not put
any magnetic object close to a diskette (e.g., screwdrivers and
telephones) as this may damage the diskette. It is important to find out
how to insert diskettes into your particular diskette drive . In general,
the "rule of thumb" applies : you should hold the diskette with your
thumb on the square label in order to insert it correctly (see Figure 1.7).
If you are practicing for the first time , use a copy of the System Diskette
(in case you should damage it).

INTRODUCTION TO CP/M AND MP/M 11

Figure 1.7: Inserting the Diskette Into Drive 1 (Sol)

If you turn the computer (or the drive, if it is separate from the com-
puter) OFF while a diskette is still in a drive slot, the diskette might
become unusable. Power surges may cause the computer or the drive
electronics to send unwanted signals to the diskette and overwrite ex-
isting information. If you leave your computer and your drives ON
when inserting or removing diskettes, you will not have this problem
(unless there is a power failure). Similarly, when you want to turn the
system off, always be sure to remove the diskettes first.

We will now go through the steps involved in "bringing up" the
system. Again, by "system" we mean either CP/M version 1.4, CP/M
version 2.2, or MP/M version 1. These versions are similar, although
CP/M version 2.2 does have some advantages over version 1.4. MP/M
version 1 is almost identical to CP/M version 2.2. All three systems will
be described. When we mention "the system," we mean any of the

three; otherwise we will specify which system we are referring to.

12 THE CP/M HANDBOOK WITH MP/M

Turn It On, Insert System Diskette, and Boot

The Procedure

Before we begin, note that the System Diskette is the special diskette
that holds the CP/M (or MP/M) operating system. You probably
received only one System Diskette, so you should ask for, or make a
copy to use in practice sessions.

If you cannot find someone to make a copy of the System Diskette for
you and must do it yourself, first finish reading this section and learn
how to turn your system on, then follow the procedures described in
Chapter 3 and summarized below. On the screen displays, underlined
characters are characters typed in by you. A "carriage return" (a
special key on the keyboard) is shown as d . The procedure summary is:

1. Insert System Diskette in drive A
2. Insert a blank diskette in drive B
3. Type the characters shown in this display:

INTRODUCTION TO CP/M AND MP/M 13

A> SYSGEN)

SYSGEN VER 1.4

SOURCE DRIVE NAME # (OR RETURN TO SKIP) A

SOURCE ON A. THEN TYPE RETURNJ

FUNCTION COMPLETE

DESTINATION DRIVE NAME (OR RETURN TO REBOOT) B

DESTINATION B, THEN TYPE RETURN J

FUNCTION COMPLETE

DESTINATION DRIVE NAME (OR RETURN TO REBOOT)j

A> PIP B : A:*:*;IVj j

(Copying Mimes)

A>

4. Remove the copy from drive B, label it, and insert it into drive

A.

Now, let us take a copy of our System Diskette and learn how to turn
the microcomputer on and off. Since different computers have dif-
ferent methods for turning on the system, be sure to follow the instruc-
tions provided with the computer.

In order to bring up CP/M, you should:
1. Turn on the computer and the peripherals
2. Transfer the CP/M program from the diskette , where it is stored,

into the computer ' s memory.
The exact procedure tends to vary slightly for each computer. Com-

puters that were not designed for CP /M, and that are equipped with

their own monitor or operating system (such as the SOL) require two

successive operations to bring up CP/M. Computers that are designed

to run CP /M, however, accomplish this in one simple operation. The

computer ' s own resident monitor program automatically loads CP/M

from the disk.

14 THE CP/M HANDBOOK WITH MP/M

We will now examine an example of each case by describing how to
turn on two different microcomputer systems.

Turn on the Cromemco

To turn on the Cromemco computer, press the ON/OFF switch on
the back of the box, and turn the key in front to ON. Turn on your ter-
minal, your printer (if you have one), and any other terminals (if you
are using MP/M). The Cromemco's disk drives are contained inside the
computer box and do not need to be turned on separately. If you have
other storage devices, such as a hard disk drive, turn them on also.

Figure 1.8: Inserting the Diskette

Now, insert the System Diskette into disk drive A-drive A is the
closest slot to the key (as shown in Figure 1.8). Turn the key to RESET
and back to ON (see Figure 1.9). Go over to the terminal's keyboard,
find the Carriage Return key (usually marked RETURN or CR), and hit

INTRODUCTION TO CP/M AND MP/M 15

Figure 1 .9: Turning Cromemco On

Figure 1 . 10: The Keyboard of the Terminal

16 THE CP/M HANDBOOK WITH MP/M

it two or three times (see Figure 1.10). Suddenly , the system message
and a prompt will appear on your screen:

System Message:

System prompt:

System Message:

System prompt:

48K CP/M

or (with MP/M)

xxK MP/M

OA.

CP/M is now up and running and waiting for your commands.

Turn on the SOL

To turn on the SOL computer (an older system) use the switch on the
back of the terminal, and turn on the TV monitor (CRT screen). (See
Figure 1.11.) Turn on the separate disk drives and insert the CP/M
System Diskette into drive A (the lower slot). (See Figure 1.12.) This
symbol will immediately appear on your screen:

I

This is a prompt from the SOL's monitor program, not from CP/M,
which is still on the diskette. Note that if the key marked LOCAL (on
the SOL's keyboard) is ON, you are not actually connected to the
system. Turn LOCAL off by pressing it.

To bring up the system, type the following command:

> EX E000,1

The symbol 1 represents the RETURN key. The value E000 is the ad-
dress of the program that loads CP/M automatically from the disk.
This value varies with each disk controller. The vendor of your disk con-
troller will tell you which address must be used with its system.

INTRODUCTION TO CP/M AND MP/M 17

Figure 1 .11: The SOL System

Figure 1 . 12: Inserting a Diskette in A

18 THE CP/M HANDBOOK WITH MP/M

After you type the command to bring up the system, the screen will
display:

48K CP/M

A>

or (with MP/M):

xxK MP/M

OA>

CP/M is ready and waiting for you.

What If SOL Does Not Work or Nothing Happens

Check first to see if the LOCAL key is on (it should be OFF). If
LOCAL is on, turn it off, and try typing `EX E000' again, followed by
RETURN (1).

If LOCAL was off, and the system did not come up, check to see if
the UPPER key is on. This key makes all characters UPPER CASE in-
stead of lower case. You must type `EX E000' in all UPPER CASE (ex-
cept the zeroes). Push the UPPER key down to the on position (not the
SHIFT LOCK key) and your `EX E000' command will work.

USING CP/M

Ready to Start

You just performed a "bootstrap" operation, or "cold start," or
"cold boot." Some people prefer to think machines are cold until you
turn them on, or that you "bring up" an operating system by kicking it.
The term "bootstrap" actually came from the idea that if you were
strong enough, you could "pull yourself up by your bootstraps." Ac-
tually, the resident monitor,"pulls CP/M off the diskette and starts
it," i.e., the system "starts itself."

A "cold start" differs from a "warm start," which will be described
later.

INTRODUCTION TO CP/M AND MP/M 19

Now what does this `A' (or `OA') mean , and what is a prompt?

System Prompts

Aprompt is a message or a symbol that the system displays when it is
ready for your next command. All systems have prompts, but each uses
a different symbol. For CP/M version 1.4 or below, the start symbol is
`A > '. For CP/M version 2.2 and MP/M, the symbol is `OA > '. The A
stands for diskette drive A, and the `0' stands for user area zero. User
areas are described in Chapter 2, but you do not need the information
yet (you will not be changing your user area).

The system prompt always tells you what diskette (or disk) drive you
are "in" i.e., the one that you are using . You have at least one drive,
and it is labeled W . Subsequent drives would be labeled ` B', `C', etc.
Let us switch to drive B, assuming that you have two drives.

You type:

B1

The response is:

B>

The system is now running with drive B, and the prompt is now:

B>

Let us go back to A:

B> A:J

A>

Files

Diskettes hold information in files. To extract that information, you
must tell the computer to go into a particular diskette or disk (via the
diskette or disk drive) and find a file by a certain name (a filename).
You booted the system by using diskette drive A. Since you haven't
"moved" to another drive, you are still "in" A; therefore, you get the
`A>' prompt. You can move to another drive only ifyou have another
diskette in the drive.

20 THE CP/M HANDBOOK WITH MP/M

We'll show you how to put in another diskette later in this chapter.

Touring the Keyboard

Hit only the RETURN key. The system prompt should appear again.
Hit the RETURN key several times, and notice how easy it is to send
blank lines to the computer. The RETURN key is always used to send a
command to the computer. You always type a command and follow it
with RETURN, symbolized by d in this book. There are only a few
special cases in which you wouldn't use the RETURN key - for exam-
ple, when you use the CTRL (control) key and another key
simultaneously. These special cases will be explained in detail later.

Let us accustom ourselves to using the system first: type random
characters and hit the return key, as in the example below:

A> ANYTHING 1

ANYTHING ?

A>

If at any time your system fails to display an error message and the
system prompt, as shown above, then hit the CTRL key (hold it down)
while you hit the C key. (See Figure 1.13.) This combination (CTRL

Figure 1 . 13: Control C Causes a Warm Boot

INTRODUCTION TO CP/M AND MP/M 21

AND C) produces a "warm start" (or "warm boot," or "system re-
boot"). A warm start essentially interrupts whatever the computer is
doing and starts the operation system over again. You will then get the
system prompt back.

If this does not work, refer to the section "What's Wrong . . . ?" in
this chapter.

You should practice using CTRL and C, (abbreviated } C in this
book; 4 stands for CTRL). Remember that CTRL must be held down
when you press C. You should also practice using RUBOUT (DELETE
or `•-' on some terminals). When you type something, you can erase the
last character you typed by hitting RUBOUT (DELETE). RUBOUT
(DELETE) will erase the next character to the left. You can hold the key
down on some terminals and erase the entire line.

In many CP/M versions, RUBOUT (DELETE) re-displays the
character it erases, instead of making the character disappear. If
RUBOUT (DELETE) re-displays (echoes) the character it erases, it
would look somewhat like this:

A > THIS ISAN EXXE NASI SIHT

(We start hitting
RUBOUT

(DELETE) here.)

(We can start
typing again here.)

Another way to erase a line is to hit the CTRL and U keys
"simultaneously" (i.e., holding CTRL down while pressing U).
CTRL and X will do the same thing . They are abbreviated 4 U and
4 X. When you press CTRL and U (or CTRL and X), the system
will display a number sign (#), meaning "everything to the left of
this sign is erased":

A > THIS IS AN EXAMPLE#

(Start typing
again here.)

(CTRL and U (or CTRL and X) pressed here.)

22 THE CP/M HANDBOOK WITH MP/M

You can again type as if it were a new line. You can, of course, hit
RETURN to send a blank line and re-display the system prompt.

What's Wrong ... ?

Sometimes, something unusual happens, and you may not be sure
what caused it. If you hit RETURN and get no response from the com-
puter, then the computer is busy doing something (i.e., running a pro-
gram). If you inadvertently typed the name of a program you didn't
know existed, and that program started running, you can abort the pro-
gram (i.e., stop it) and return to the system by doing a warm start
("warm boot"): type + C.

If a warm start (f C) does not bring back the system prompt (A>),
check to see if any of the diskette drive lights are on. A light on means
that the computer is trying to read the diskette in that drive. If the light
is on, and there is no diskette, you can try to insert a diskette into the
drive so that the computer has something to read. If this fails to bring
back the system prompt (or resume the program), you will then have to
go back to the beginning and do a cold start (refer to the beginning of
this chapter for the section "Turn It On, Insert System Diskette, and
Boot! ").

In some systems, an interrupt facility is provided to stop the com-
puter. In the case of the SOL, hitting UPPERCASE and REPEAT si-
multaneously will bring you back to the SOL's monitor.
NOTE: Be sure to remove the diskettes before turning anything off.

System Diskette

It is important to remember that your system diskette is configured
for your specific system. If any of the hardware elements of your system
are changed, your original System Diskette will usually not work.

In particular, if you change the printer, the CRT terminal, the disk
controller, or the memory size, you will need a different System
Diskette. If you change your hardware configuration from time to
time, be sure to label your System Diskettes correctly so as not to mix
them up.

Examining the Directory

Our System Diskette is in drive A. It contains CP/M as well as other
files. Let us examine it.

You can find out what files you have on the diskette in drive A by typ-

INTRODUCTION TO CP/M AND MP/M 23

ing the DIR ('directory') command:

A > DIR)

A:PIP COM

A:ASM COM

A:LOAD COM

A:PROGR COM

A:STAT COM

A:PROGR INT

If your display goes by too quickly, press the CTRL and S keys simul-
taneously (i.e., + S). This will stop the display. When you are ready
for the list display to continue, press the CTRL and S keys
simultaneously again , to re-start the display.

This is a sample display of the DIRectory command. Every
diskette (or disk) has a "directory" of filenames, one for each file.
We know that these files are on the System Diskette because we are
in drive A, and the System Diskette is in drive A. Each filename is
prefaced by `A:' to show that the file is in drive A. The first name
'PIP' and the subsequent word `COM' form a complete filename
`PIP.COM'. 'PIP' is the primary name, and `COM' is an extension,
indicating the type of file. They are separated by a period.

Extensions are also called file types. For example, all files with
`COM' as an extension are commandfiles (sometimes called transient
commands). All files with `BAS' as extensions are BASIC source pro-
grams, and all files with `INT' as extensions are BASIC intermediate
programs. You do not need to use a specific extension for a data file or
text file (a file that holds certain types of information, such as text).
You can make up your own extensions to categorize your data files.

It is important to separate the different file types, as a program
could appear in your directory with the same name and two or more
types.

24 THE CP/M HANDBOOK WITH MP/M

For example:

TEXT.WRK (working file)

TEXT. BAK (backup file)

or

PROG.BAS (listing in BASIC)

PROG.INT (compiled form)

Always use the complete filename (i.e., primary name and exten-
sion, with a period) when you refer to a file, except when you use a
command file as a transient command (discussed later in this chapter).
Since you now want to create a new file and not alter existing files, you
should learn how to insert a new diskette and create a new file on it.

RUNNING A PROGRAM

We will now create a simple file. This file will be used in the rest of the
chapter to demonstrate the correct procedures and use of CP/M
facilities. The best way to create a file is to run a program that creates a
file. An example of this is a word processing program, or a business
program. If no one is available to show you how to use such a program,
you can use ED, the editor that is supplied with CP/M, to create a file.
We will run both a sample business program, and then show you how to
use ED to create a file.

Let us first insert a blank diskette into drive B (see Figure 1.14). We

will use the mailing system NAD (from Structured Systems, Oakland,
California), written in CBASIC and supplied with several programs. To
create a new name and address file, we type:

A > CRUN NADENTRYJ

To work, both CRUN (the CBASIC compiler) and NADENTRY
must be on our System Diskette . Note that we have used an incomplete
filename for NADENTRY. The CRUN program automatically
assumes that NADENTRY is of type INT.

In order to describe what has just happened , we must define a new

INTRODUCTION TO CP/M AND MP/M 25

Figure 1 . 14: Inserting a Diskette in B

word: compiler. CRUN is a compiler. In the instruction CRUN
NADENTRY, NADENTRY refers to a program written in the BASIC
computer language. In order to execute a program written in BASIC,
the computer requires a BASIC interpreter or compiler. Here, the
CRUN compiler is used. The theoretical difference between a compiler
and an interpreter is that a compiler executes the program more effi-
ciently while an interpreter allows interactive program development.
Once the program executes, the effect is identical, regardless of whether
an interpreter or a compiler is being used. The sequence is shown below
(the dialogue has been abbreviated for clarity).

A > CRUN NADENTRYJ

CRUN VER 1.04

NAD VER 2.0

We create a new file called NAMES on drive B (there must be a
diskette in drive B):

26 THE CP/M HANDBOOK WITH MP/M

ENTER FILE NAME: NAMES

ENTER DISK DRIVE: B

We enter a name and address (A specifies " add" a name):

ENTER FUNCTION (A, C, D, E, 5, OR STOP): AI

RECORD NUMBER IS: 7

ENTER NAME: CHARLES FRIEND

ENTER LINE ONE OF ADDRESS: ABC COMPANY

ENTER LINE TWO OF ADDRESS: 123 LUNAR DR

ENTER CITY: PALO ALTO

ENTER STATE: CA

ENTER ZIP: 90010

ENTER PHONE: 408 123 4567

We save it on the disk. The `S' command is specific to NADENTRY and
means "Save":

l

ENTER FUNCTION (A, C, D, E, S, OR STOP): 51

I RECORD SAVED

ENTER FUNCTION (A, C, D, E, 5, OR STOP): STOP I

NADENTRY COMPLETED

A>

J

We are back in CP/M. The action of saving the entry has created a file
on B called NAMES. This file contains the name and address of
CHARLES FRIEND.

INTRODUCTION TO CP/M AND MP/M 27

CREATING A FILE WITH ED

A simple text file can also be created by using the CP/M editor, ED.
If you have another editor that is easier to use and runs on CP/M, and if
its documentation is easier to read, try using your other editor; other-
wise, follow along with our simple ED session.

The ED command is a transient command , which means that it exists
on diskette as a command file (as ED.COM). The System Diskette in
drive A should have ED.COM on it. You can check this by using the
DIR command:

Type:

A: 1 (to return to drive A)

Then type:

DIR I (to examine the directory; you should see
ED.COM listed)

Type:

B:1 (to return to drive B)

Since you are presently in drive B, you must specify drive A in the
filename when you refer to ED.COM.

Note that when you are using Cromemco's CDOS, you do not need
to specify the drive when typing a command. You can type: `ED J ' on
drive B. CDOS will look for it on drive B, then automatically look on A
(if it is not found on B). This is a convenience feature.

When typing a transient command, you must not type the extension
`.COM' with the primary name. To execute `ED.COM', you only have
to type `ED' or `A:ED' depending on the disk you are on. (In fact, if
you type 'ED.COM', you will get an error!)

First, think of a filename for your file, like SAMPLE.TXT (always
separate the primary name SAMPLE from the extension TXT with a
period). The extension TXT is not required, but it helps to identify the
file.

Execute the ED command by typing: `ED', a space, and then your

new filename:

28 THE CP/M HANDBOOK WITH MP/M

B> ED SAMPLE.TXTJ

ED?

B>

Wait! We forgot to specify drive A with the ED command (because
ED.COM is on drive A, and we are on drive B). Let us try it again:

B> A:ED SAMPLE.TXT1

NEW FILE
*

It worked. Do not forget to type SAMPLE.TXT after ED!
The asterisk (*) is the editor's prompt. It indicates that the ED pro-

gram is up and running and ready for your next ED command. The ED
commands are described in detail in Chapter 4, but you can learn a few
of them here: The I command inserts new text into a file, the B com-
mand puts you at the beginning of the file, and the T command displays
the contents of the file ('Text'). The E command saves the file and ends
your session with ED ('End').

You can use ED to create and modify text files. A text file is just like
any other file, where the information is represented in binary code
called ASCII. Each character on the keys of the terminal's keyboard
has an ASCII code number - they are shown in Appendix C. You will
probably never need to use the code number, but it helps to know how
they're "coded" - in case you should ever see strange numbers in your
file, surrounded by strange symbols.

To insert new characters into your new file, use the I command, then
type the lines of text. End each line with a carriage return (RETURN
or CR), just like on a typewriter. Use + Z when you are finished insert-
ing text.

* 11

THIS IS MY NEW TEXT FILE, CALLED SAMPLE.TXT1

Z

INTRODUCTION TO CP/M AND MP/M 29

If you want to perform only one PIP operation, you can use a shorter
command and type the PIP expression and the PIP command in one
line:

A> PIPA:COPY.TXT = B:SAMPLE.TXT

A>

When PIP stops copying, the system prompt will again appear.
Notice how the light on drive B goes on, then off, and the light on

drive A goes on, then off, as each disk is accessed. PIP copies the file in
segments called blocks. If the file is large, it has to keep going back to
the original file to get more blocks.

You now have a copy of SAMPLE.TXT called COPY.TXT in drive
A. Let us make a copy of COPY.TXT and put it on drive B:

A> PIP B : =A:COPY.TXTJ

A>

We did not have to specify a copy filename ('B:') because we want our
copy of COPY.TXT to have the same name as the original. You will
probably want to do this type of copy operation more often than any
other. The above command is equivalent to:

A> PIP B :COPY.TXT = A:COPY.TXT d

A>

Both commands create a new COPY.TXT on drive B that is a copy of
COPY.TXT that exists on drive A. You do not have to specify a
filename for the copy if you want it to have the same name as the
original file. You must, however, specify the drive, and the drive must
be a different one than the original file's drive if the name of the new file
is identical to the source.

This is because you cannot have two files on one diskette with the
same name . If you tried to make a copy of a file without specifying
either a new filename or a different drive, you would get the statement
`INVALID FORMAT', followed by the part of the expression that
caused the error. If you get this error, hit the RUBOUT (or DELETE)
key to clear the error.

Most copying involves diskette to diskette transfers (or disk to

diskette, and vice-versa), because you want to make backup copies of
files on disks or diskettes. Since you are about to learn the ERAse com-
mand, you should learn how to backup your entire diskette (in case you
make a mistake with the ERAse command).

COPYING AN ENTIRE DISKETTE

You just learned how to copy the file COPY.TXT on drive A to
COPY.TXT on drive B:

A> PIP B : = A:COPY.TXT J

A>

You just made a backup copy of COPY.TXT.
To copy an entire diskette with one command you need to use a

filename match (an expression that tells the computer to "perform this
instruction on any file that matches this name"). The filename match to
use for all files in the diskette is For example:

A> PIP B :=A:*.*J

The symbol '*'will match any name in its field. This command copies
all files that match `*.*' (all files on the diskette) on drive A to new files
with the same names on drive B. (Note that with MP/M and newer ver-
sions of CP/M, `*.*' will only match all files in the current user area.)

When copying an entire diskette onto B, it is best at this stage to have
an empty diskette in drive B. Otherwise, two problems could occur:

1. If B already has files, it must have enough space left to accom-
modate all of those of A. A standard diskette can store up to 270K
bytes, including the directory. (If you execute DIR, it will tell you
how much space on the diskette has already been used.)

2. If B already has a file with the same name as the one being copied
onto B, the copy operation will stop.

Since you are in drive A (in the above example), you can abbreviate
the above command:

A> PIP B:=*. I

Both commands search drive A (the current drive in this example) for
files that match `*.*', and create copies of the files on drive B using the

INTRODUCTION TO CP/M AND MP/M 37

same filenames . If a file already exists on drive B with the same name, it
is deleted.

Remember, filenames can have ten characters to the left of the
period, and three characters to the right of the period. The `*' symbol
matches any ten characters to the left of the period, and the'.*' symbol
matches any three characters to the right of the period.

When using the above command, remember that all files (and only
files) on the diskette will be copied. The CP/M program is not a file. It
is stored on two reserved tracks on the disk. If CP/M is the only thing
on a diskette, the DIR command will show an `Empty Diskette.' This is
because CP/M is a special program which is not stored as a file. PIP will
only copy files. If CP/M must also be copied, a special command must
be used, i.e., SYSGEN (described later).

A Practical Hint

Anytime that you edit a file, it is preferable to use the copy the next
time around: the copy will be loaded much faster by the editor program
than the original diskette . This is due to the technique used to allocate
disk storage in blocks. On the original diskette , the file is spread over
non-adjacent blocks. On the copy, it is nicely compacted on common
tracks, therefore the data is accessed much more rapidly.

38 THE CP/M HANDBOOK WITH MP/M

PRINTING THE FILE

You might have two copies of COPY.TXT (SAMPLE.TXT and
COPY.TXT on drive B), but before you play with the ERAse command,
you should also learn how to send the file to the printer. There are two
easy ways.

The easiest way is to hit the CTRL and P keys simultaneously. Now
type a "line feed". Notice that your printer (if it is on) will jump a line.
Now, anything you type at the keyboard, and anything that appears
on the screen will also be printed on paper. Try typing, and using the
DIR command to verify the correct operation of the printer. Then, use
the TYPE command:

A> TYPE SAMPLE.TXT I

display

A>

On your screen and at the printer, the TYPE command typed your
file. Now, hit CTRL and P simultaneously again . You just turned the
print operation off. Use the TYPE command again , and your file ap-
pears only on the screen of the terminal (at a much faster speed).

INTRODUCTION TO CP/M AND MP/M 39

This method is easy, but cumbersome if you want to print out several
files. To print several files, use a form of the PIP command that will
send one or more files to the printer:

A> PIP LST:=COPY.TXTj

This command sends the file COPY.TXT to the " listing device" that
is the printer. `LST:' is always used as the "listing device." If it does not
work, check the STAT command in Chapter 2.

You can send all of the files in drive A to the printer by substituting
for `COPY.TXT'. To print out all the files in drive B from drive A,

use the following command:

A> PIP LST:=B*.*j

ERASING FILES

Now that you have COPY.TXT on drive A, and COPY.TXT and
SAMPLE.TXT on drive B, you can afford to erase one of them.
Always check your directory first to see what you have:

A> DIR j

A> B:,[

B> DIRJ

SAMPLE TXT

COPY TXT

B>

Use this command to erase file COPY.TXT:

B > ERA COPY.TXTJ

If the file does not exist , you will get `File Not Found ' as an error

40 THE CP/M HANDBOOK WITH MP/M

message. If you want to erase a file or another diskette, you can specify
the drive letter with the filename:

B > ERA A : COPY.TXTJ

This command erases the file COPY.TXT on drive A.
To erase all of the files on a diskette , use a filename match for all files:

B> ERA *.*I

This command will erase all of the files on drive B. In MP/M and
newer versions of CP/M, the filename match' *.*' will only match all
files in the current user area . (See Chapter 2 for a discussion of user
areas and filename matching.)

UNDERSTANDING CP/M

The Internal Mechanism

You just learned how to bring up a CP/M (or MP/M) system, create
files, rename and erase files, copy files and diskettes, and print files; but
what actually happened?

CP/M reacts to a variety of instructions: "Look in this diskette for
that file by that name, display it, make a copy of it, etc." Let us look
more closely at two of those operations: displaying a file, and copying
it.

When you tell CP/M to `TYPE SAMPLE.TXT', you are executing a
series of instructions called `TYPE'. The operating system program ac-
cepts what you have typed and reads it when you hit the RETURN key.
It reads `TYPE', and then goes looking for the TYPE program instruc-
tions. Then, it reads `SAMPLE.TXT' and off it goes looking for a file
by that name. It looks only in the current drive for SAMPLE.TXT
because you did not tell it to look in another drive. Once
SAMPLE.TXT is found, the operating system starts to send parts of it
to the "console device ." The file is sent block by block, until the entire
file is sent . Since your "console device" is your terminal , you receive
the file on your screen . If you enabled the printer to repeat (echo)
everything sent to the "console device," then it would also come out of
the printer.

CP/M is a complex program that executes simpler utility programs.
The system reserves an area of memory inside the computer's internal

INTRODUCTION TO CP/M AND MP/M 41

memory (in the box) to temporarily store programs and execute them.
For example, to copy a file, you have to execute the PIP program.
When you type PIP, the system loads the PIP program into this internal
memory and starts to execute it. PIP is called a transient command or
transient program. It is a program (written in machine language) that
executes like a command, except that it is not part of the CP/M "core"
and must exist as a file in your diskette with a `.COM' extension
(PIP.COM). Other commands, like STAT, SUBMIT, SYSGEN, etc.
are also transient commands.

Transient Commands

Transient commands (command files) are actually programs written

in machine language (assembly language). After being "assembled"

and tested, a machine language program was LOADed (using the

LOAD command) into the system' s internal memory (called the TPA

- Transient Program Area). The load command also provided the
`.COM' extension, and the program became a transient command.
Now you can execute the program by just typing its primary name

(without the `.COM' extension).
For example, PIP.COM is a transient command. Execute it by typ-

ing:

A> PIP,(

You can add your own (purchased) commands to the diskette, such as

a word processor, or a language like BASIC (CBASIC, MICROSOFT
BASIC, etc.). For example, WORDSTAR, a word processor from
Micropro International in San Rafael, California, has two transient
commands: WSU.COM and WSMSG.COM. WORDSTAR is executed

by typing:

A> WSUJ

WORDSTAR thereby becomes another facility within the CP/M (or
MP/M) system. Another example would be Microsoft BASIC, which
has the transient command MBASIC.COM. To execute the Microsoft
BASIC system, you just have to type:

A> MBASICJ

42 THE CP/M HANDBOOK WITH MP/M

Always consult the manuals provided with new software for actual
execution instructions.

Turning the System Off

When you are ready to turn off the system, first take out your file
diskette (in drive B) and then the System Diskette (in drive A). Do not
turn off the system with diskettes still in the drive slots, as you may erase
them.

After you take the diskettes out, you can safely turn off your com-
puter system by turning off the devices and then turning off the com-
puter itself.
NOTE: do not turn the system off without first making back-up
copies of any new files you have created.

A USER CHECKLIST

The following user checklist summarizes the precautions and pro-
cedures you should always observe. They are very important. Take the
time to learn the instructions in this list before using your computer.

INTRODUCTION TO CP/M AND MP/M 43

USER CHECKLIST

TURNING THE SYSTEM ON.

Make sure that:

q Diskettes are out of the disk drives when applying power.

q The proper system diskette is available

q One or more blank diskettes is available

q All cables are properly connected

q All settings are correct on the printer and the terminal

USING THE SYSTEM.

It is important that you:

q Have a copy of all diskettes you are using

q Frequently save your file onto the disk during editing

q Label diskettes promptly with the title, date, and contents, using a
felt-tip pen

USING A NEW PROGRAM.

You should:

q Make a copy before using your program.

q File away the original of the new program in a safe location.

LEAVING THE SYSTEM.

It is important that you:

q Have a back-up copy of all new files created

q Remove diskettes from the drives.

44 THE CP/M HANDBOOK WITH MP/M

SUMMARY

You have now learned how to turn the system on and off, how to get
CP/M started, and how to use the basic CP/M commands and utilities,
such as DIR, REN, ERA, PIP, ED, as well as special functions, such as
DELete and CTRL-C.

You have also learned how to list a file on the printer or screen, and
make copies of your files as well as of CP/M.

You may be surprised to learn that you now know enough about
CP/M to run most application programs without problems. However,
if you want to learn more about your operating system and its
resources , read on.

INTRODUCTION TO CP/M AND MP/M 45

46 THE CP/M HANDBOOK WITH MP/M

2
CP/M AND MP/M FACILITIES

INTRODUCTION

This chapter will teach you all of the CP/M commands, including
ERA, REN, STAT, DIR, and the control characters. Assembling,
loading, dumping , executing , debugging and saving programs (ASM,
LOAD, DUMP, DDT, SAVE), and submitting a file for execution
(SUBMIT and XSUB) will also be covered. A summary of the control
facilities and the commands available with CP/M will be presented.
Each command and its use will be examined in detail . It is not necesary,
at this point, to memorize the commands, but you should review them,
as they may soon prove helpful.

Even if you are just a casual CP/M user, you should learn the follow-
ing:

• The five control characters used most often (described in the next
section)

• How to erase files with ERA
• How to change filenames with REN
• How to know your file space with STAT
• How to copy your CP/M "system" with SYSGEN
It is useful, although not absolutely necessary, to read this chapter in

its entirety once. However, as you use CP/M, you should read this
chapter again if you want to take full advantage of the resources CP/M
and MP/M offer.

The material presented in this chapter will enable you to use all of
CP/M's commands (and most of MP/M's commands). You will prob-
ably refer to this chapter frequently, until you are completely familiar
with CP/M's actions and command conventions. You will then find
Chapter 6 to be a useful reference guide.

Command descriptions are based primarily on CP/M version 1.4.
CP/M version 2.2 has a few enhancements, whereas MP/M version 1.0
has many. Since most users have version 1 .4, we will focus our discus-
sions and examples of CP /M on that particular version , and describe

47

Function Key(s) to Hit Operation

End DDT (debugger) operations: GO followed Returns control to

by RETURN CP/M or MP/M

End ED (editor program) operations: E, followed by Saves text in source

RETURN file and buffer

End ED inserting operation: CTRL-Z Restores control to ED

Detach a running program CTRL-Dtt Restores control to

(process) from a terminal: MP/M (program runs

detached)

Send everything to be typed and CTRL-P Printer echoes what

displayed at terminal to printer: you type and what CRT

displays

Stop sending everything to printer: CTRL-P On/Off switch for

printer echo

Stop fast displays for easy reading: CTRL-S Halts the display

until you hit another

#S

Start display after stopping it: CTRL-S On/Off switch for

delaying displays

t indicates CP/M version 2.2 and MP/M only

tt indicates MP/M only

Figure 2.1: Control Characters (cont.)

This looks confusing , but try it on your computer. Use CTRL-R, and

you will get a clean, retyped line:

A > PIP B:NEW.NAD =A:OLD.NAD,[

The typed command line is now correct. You can type a RETURN, and
the command will execute.

Similarly, if you typed an incorrect command, you can erase the en-
tire line with a CTRL-U (see Figure 2.1). The five control characters
available for input on all CP/M versions are summarized in Figure 2.2.
Be sure to familiarize yourself with all of them.

Referring back to Figure 2.1, note that it lists all of the control
characters available, not just for CP/M, but for all CP/M versions
when using the PIP, ED and DDT commands. It is important to know
the commands available under CP/M. Depending upon the version

50 THE CP/M HANDBOOK WITH MP/M

rubout/delete delete and echo last character

CTRL-U or CTRL-X delete line

CTRL-R retype line

CTRL-E continue on next line

CTRL-C reboot CP/M

(Note : CTRL-P and CTRL-S are also available for printer control.)

Figure 2 . 2: Summary of Editing Controls

(CP/M or MP/M), there are at least five built-in commands:

TYPE

DIR

REN

ERA

SAVE

and several standard "transient" commands, which must be present as
files on the system diskette in order to be executed when called. These
transient commands are:

3SYSGEN

ED

_,PIP

ASM

LOAD

DUMP

DDT

"SUBMIT

MOVECPM

ISTAT

All of these commands are listed in Figure 2.3. Each will be described in
detail in this chapter.

CP/M AND MP/M FACILITIES 51

Handling Devices Command Operation

Display and alter device STAT) *NOTE: STAT VAL: J
assignments: STAT device will display possible

assignments STAT commands

Switch from one disk drive d: J d is the symbol of the

to another new drive (A, B, C, D)

Copy from one disk to another: PIP) Peripheral Interchange

PIP destination = Program

source) Destination filenames

Print, punch, copy, combine, PIP parameters See discussion of PIP

and do other file operations

with devices:

Spool files to the printer:tt SPOOL filename

filename... J

Stop and delete the spool STOPSPLR J

queue:tt

Display console (terminal) CONSOLE)

number: tt

Enable system operator DSKRESETJ The command asks

to change disks: tt other users to enable

a disk change

Make a copy of the CP/M system SYSGEN J Starts up the SYSGEN

(make a new system diskette): program

Create a different version of the MOVCPM J Starts up the MOVCPM

CP/M system (reconfigure for program

different memory size):

Make a copy of the MP/M system, Use the commands MPMLDR or SYSGEN only

or reconfigure system: tt after reading important information in the

"MP/M Alteration Guide" of Digital

Research's docume ntation

Display MP/M system run-time MPMSTAT J Displays process

status: tt information'

indicates CP/M version 2.2 and MP/M only

tt indicates MP/M only

I

Figure 2 .3: CP/M Commands

52 THE CP/M HANDBOOK WITH MP/M

Handling Devices Command Operation

Change user area : USER n 1 n is a user area

number -- see the

section "User Areas" in

this chapter

Without n, USER displays

the current user area

Display or set the date TODD Displays time and date

and time : t t TOD mm/dd/yy Sets time and date

hh:mm:ssf

Handling Files Command Format Operation

Creating a file on a disk : ED filename CP/M's editor pro-

gram creates text

files

You can also use

any other editor

program

Renaming a file: REN newname = oldname j Changes name of

file

Erasing (deleting) files: filename Searches f or f i le-

ERA J name or match for a

filename match filename match

string

Copying a file : PIP newcopyname = Copies a file and

oldcopyname j gives it a name

Copying from one drive PIP d:newcopyname

to another (single d:oldcopyname

copying): (where d is the letter

of the drive)

(see description of PIP

for abbreviations)

Doing many copy PIP) Use RETURN to

operations : * newcopyname = terminate PIP

oldcopynome 1
*d:newcopyname=

d:oldcopynameJ
*1

Figure 2 .3: CP/M Commands (cont.)

r

CP/M AND MP/M FACILITIES 53

Handling Files Command Format Operation

Display contents of text TYPE filename File contents are

file: displayed

Use 4P to print it

Modify contents of text ED filename ED program allows

file: you to edit text files

List filenames in filename DIR by itself lists all

directory: DIR filenames

filename match

Display file and disk d:filename This displays sizes of

sizes: STAT files and space

d:filename match
111111

taken up

STAT d: This displays the

current disk, or,

optionally, the disk

d space that is free

Display file attributes t STAT d:filename Display attributes

(indicators): like R/O for read-

only or SYS for

system file

Create an assembly ED filename CP/M's editor pro-

language program: gram creates text

files. Any CP/M-

based editor pro-

gram can be used to

create text files

Handling Programs Command Operation

Assemble an assembly language ASM filename Creates an "object file"

program: in machine language

"Hex"

Produce a relocatable program: tt GENMOD Produces. PRL file from

filename. HEX HEX file, with optional

filename. PRL extra memory

$bytesj expressed in hexa-

decimal digits for

$bytes (See Chapter 3)

Figure 2 .3: CP/M Commands (cont.)

54 THE CP/M HANDBOOK WITH MP/M

Handling Programs Command Operation

Create a new transient command: LOAD filename Creates an executable

command file with a

.COM extension from

an "object file" in "hex"

machine language

Execute transient command or programnamej Progromname is the

program : filename of a.COM

extension file without

the'.COM'

Print an "object file" (file DUMP filenomej Used for hex files

in "hex" machine language):

Save a copy of a transient Save p filename p is the number of

command or program (after pages . One page is 256

LOADing or executing): bytes

Debug a program (using the DDT filename RDT is the name of the

CP/M or MP/M debugger): RDT filename tt MP/M relocatable

debugger

Submit a batch of commands SUBMIT filename porm stands for para-

(programs): parml parm2 ... meter . This command

looks for a file of many

commands, substitutes

parameters and exe-

cutes the commands.

The system displays the

commands executing

(unless you use tXSUB).
You can abort the

operation at any time

using RUBOUT. tXSUB',

if included as the first

command in the sub-

mitted file, will process

the commands and ac-

cept input for programs

(if programs are set up

for buffered input).

Scheduling programs for SCHED mm/dd/yy mm/dd/yy is the date

execution : hh:mm and hh : mm is the time

Figure 2.3: CP/M Commands (cont.)

CP/M AND MP/M FACILITIES 55

To effectively use the resources of CP/M and its standard com-
mands, two concepts need to be understood:

- Built-in vs. transient commands
- Filenaming conventions

Let us now examine them.

BUILT-IN VS. TRANSIENT COMMANDS

As you know, when you see the CP/M system prompt (a letter in-
dicating the disk drive, followed by a right angle bracket, e.g., `A>'),
you can type any built-in command, and the computer will respond im-
mediately. Symbolically, all commands take this form:

A > ERA SAMPLE. TLB

F
TO THAT

(Object of predicate

or "argument")

Figure 2 .4: "Computer , erase the file SAMPLE.TLB."

Some commands are simple, and some are complex. All commands
are actually assembly language programs (written in the language that
computers "understand"). Some are "built-in" commands (not listed
in the directory) and some are "transient" commands (listed in the
directory). You can always execute the five "built-in" commands
(DIR, ERA, REN, SAVE, and TYPE) because they are built into the
CP/M operating system program. You can only execute transient com-
mands if they exist as command files (.COM) on your disk. A transient
command is actually an assembly language program that can be copied,

deleted, and moved, and yet still be executed as a command. You can
create your own transient command (program) if you know how to pro-
gram a computer. A transient command's filename always has a
`.COM' extension (e.g., PIP.COM), but you do not have to type the
'.COM' when it is executed as a command. If you want to copy, delete,

56 THE CP/M HANDBOOK WITH MP/M

or move the file, you must, however, specify the entire filename with the
`.COM' extension.

To find out if the transient command you want is on your disk, use
the DIR command. The standard transient commands provided with
CP/M are: ASM, ED, DUMP, LOAD, PIP, MOVCPM, STAT,
SYSGEN, and SUBMIT. MP/M commands are all transient com-
mands, or "resident programs," as described in the special section
"CP/M Version 2.2 and MP/M." Although all transient commands
are described, you will probably only use a few. A typical system direc-
tory is shown in Figure 2.5.

System Directory Required Strongly Advised Useful Optional

(CP/M exists but is invisible to DIR) 3

SYSGEN 3

PIP

~

3

STAT 3

ED 3

MOVCPM 3

ASM 3

LOAD 3

DUMP 3

DDT 3

SAVE 3

SUBMIT ^f

XSUB 3

WORD PROCESSOR 3

YOUR APPLICATION PROGRAMS 3

NOTES:

1. As a precaution , do not store data or text files on your system diskette.

2. Also, use the write-protect feature on the system diskette.

Figure 2 .5: A Typical System Diskette Directory

FILENAMES

Every system directory contains a filename for all of the files on the
diskette . An example of a filename format is NAME.TTT, where
NAME may have up to eight characters , and TTT is the extension type.
Filenames may contain letters , numbers and special characters. They

CP/M AND MP/M FACILITIES 57

may not, however, contain the following symbols:

For example:

PROG/22.BAK is legal
PROG = 22. BAK is illegal

Extensions

Filenames normally have extensions (three characters to the right of a
period). These extensions distinguish different types of files. Exten-
sions are required for several types of files; other extensions are used for
convenience (see Figure 2.6).

Whenever you use a filename as an argument to a command, you
must type the entire filename, including the extension, if any. The only
exception is when you use the file as a transient command (that file
must have a COM extension internally, even though the extension does
not need to be typed to execute the command).

Filename Matches

There will be times when you want a command to act on several files
or on all of the files at once. If the command allows this, its format in-
dicates that a filename match (abbreviated filematch) can be
substituted for an actual filename as an argument to the command. For
example, the format for the ERAse command is:

filename
ERA

filematch

This means that you must choose between an actual filename or a
filematch as an argument to ERAse.

Afilename match is a group of characters used to refer to several files
at once. The characters can be letters, digits, a period, and two special
symbols `*' and `?'. These characters and symbols may be used to con-
veniently select the filenames of several files to be affected by the com-
mand. It is therefore important to select characters that are common
to all of the filenames.

58 THE CP/M HANDBOOK WITH MP/M

Extension Type Example

COM Required Command file of a transient PIP.COM

command (program). LOAD.COM

ASM Required for assembly language source PROG1.ASM

(text) files used with ASM command. PATCH.ASM

PRN Required for the listing file of the assembly PROG1.PRN

language program. PATCHY RN

PRL Required for MP/M relocatable programs. RDT.PRL

HEX Required for program file in "hex" format PROGI.HEX

(machine language), which is ready to be PATCH.HEX

LOADed.

RSP Required for MP/M "resident system pro- SPOOL. RSP

grams."

BAS Required for BASIC program source (text) PROGBAS.BAS

files.

INT Required for BASIC program intermediate PROGBAS.INT

file for execution (already compiled).

BAK Created by ED (text editor) as a backup LETTER. BAK

copy of file before it is altered.

$$$ Temporary (scratch) files created and LETTER.$$$

normally erased by ED and other programs.

SUB Text file with CP/M built-in or transient TRANSFORM.SUB

commands or programs; to be executed

batch style by the SUBMIT program.

Figure 2 .6: Extension Types

CP/M AND MP/M FACILITIES 59

Try using the ?'symbol. It will match any character, but only one for
each `?', and in the exact position that the 'T symbol is placed. Here are
examples:

This Will Match These Filenames But Not These

S?MPL?

A?B?C

SAMPLE SIMPLE SIMPLY

AABBC ACBCC

SIMPL SAMPLEY

AABBCC ABCCC

Neither `*' nor `?' can match a period. Here are some examples of
multiple symbols in filename matches:

This Will Match These Filenames But Not These

T???Y.* TEDDY.COM TINY.COM

TARBY.ASM TARABY.ASM

TILLY TONY

or any filename

Recall that in Chapter 1 we used a filenamematch to copy an entire
diskette. The command was:

A> PIP B : =A:*.* [V]2

where `*.*' represented "all the files."
NOTE: using the'*' symbol at the beginning of the filename `*AB.*'
is dangerous! Instead, use ?AB.*. Try to avoid mixing `?' and `*' in
filename matches. Filename matches are commonly used with the PIP
command to make copies of several or all files at once (or to send
several files to a device).

BLANKS

Standard CP/M requires that a command be followed by at least
one blank before any arguments are used. In the previous example:

Al PIP B :=A:*. *[V],j

60 THE CP/M HANDBOOK WITH MP/M

PIP must be followed by one or more blanks. (It may also be pre-
ceded by a blank.) The argument `B:' may be followed by a blank, but

this is optional.
Similarly, a blank may optionally be used after or after `A:'. In

some versions of CP/M (such as North Star), all blanks are optional.

When using a "standard" CP/M version, however, remember that

blanks are mandatory after a command.
Additional blanks may be used to separate subelements of a

command. Here is an example that uses additional spaces:

A> PIP B : = A: *.*[V]I

BUILT-IN COMMANDS

Introduction

Remember that in Chapter 1 we briefly presented all of the standard
(CP/M) built-in commands (except SAVE). We will now provide
specific examples of their use.

DIR (Directory)

The directory command is used to display a list of all files present on
the diskette. To list all of the files on the diskette in drive A, type:

A > DIR,

To list the files on the diskette in drive B, type:

A > DIR B:J

(This method is quicker, and you remain in drive A.) Or, you can type

the sequence:

A>B:I

B > DIR,

(This method takes longer, but you remain in drive B after executing the
last command.) To search for a specific file on the diskette in drive B,

type:

CP/M AND MP/M FACILITIES 61

A > DIR B : SPECIFIC.NAD I

To list all NAD files on the diskette in drive A, type:

A > DIR *.NAD j

Use the DIR command often to check which files are on the diskette.
The DIRectory should also be checked after a file is created or erased.

With CP/M 2.2, the directory is listed in a four-column format.
Here is an example:

A> DIR,

A : MOVCPM COM : ASM COM : DDT COM : DUMP COM

A : ED COM : LOAD COM : PIP COM : STAT COM

A : SUBMIT COM : SYSGEN COM : XSUB COM : DISKDEF LIB

A : DUMP ASM : SINGLE ASM : COPY COM : LIST COM

A: FORMAT COM : SAVEUSER COM : USER ASM : MEMR COM

A : FILECOPY COM : SETDRIVE COM : READ-ME DOC : CONFIG COM

TYPE

The TYPE command can be used to display any ASCII file on the
screen . This is a quick and convenient way to examine any textfile. The
format is:

TYPE d: name.type

where the drive name d is optional . If you want the file to be printed,
push a CTRL -P before giving the command . Using the printer,
however, will slow down the display.

The TYPE command can be used to check on any text you have
created . While it may not provide the convenient format of a word pro-
cessing or mailing list program, TYPE does print the file as it is actually
stored in the computer ' s memory . TYPE is usually a fast way to
examine a text file that has been accidentally damaged . It is a valuable
tool for quick examination on the screen of a newly-created file.

62 THE CP/M HANDBOOK WITH MP/M

REN (Rename)

is:
This command allows you to change the name of a file. The format

REN new= old

For example , assume that FILE T I .TXT is on the diskette in drive A. If
you type:

A > REN FILE23 .TXT = FILE11.TXT I

FILE11 will be renamed FILE23, and only FILE23 will be on the
diskette in drive A. The name FILE 11 will have been discarded. The file
itself, however, will remain intact.

The drive specification is optional. For example, the instruction:

A > REN B:FILE.TXT=FILE.BAKJ

is equivalent to:

A > REN B :FILE.TXT = B:FILE.BAK 1

CP/M AND MP/M FACILITIES 63

Note that both files must reside on the same drive. The drive specifica-
tion may appear either to the left or to the right of the equal sign, and
the new filename may not already exist.

A good practice when working on a file is to include the date in the
name. For example, the PUB file may be labeled PUBMAY21. The
next time that it is updated, the file can be RENamed PUBMAY23.

At the end of a computer session, always REName the file that you
have been working on in order to:

1. Give it an identifying name
2. Avoid possible confusion
3. Include the date.

ERA (Erase)

ERA is used to erase a file. Its format is:

ERA d:name

where d is an optional drive name. An example of an ERA command is:

A > ERA PROG.TXT J

where PROG.TXT is erased.
NOTE: the ERA command can be dangerous! Use it carefully!

ERA can also be used to erase more than one file at a time. For exam-
ple, if you want to erase all files with the `.ASM' extension in their
filenames, you should substitute a match symbol for the file names:

A > ERA *.ASMI

In this case, the filename match is `*.ASM', and it matches up with all
filenames that end with `.ASM'. The `*' symbol matches up with any
number of characters, including no characters. Note that there can only
be one period in a filename. The last three characters in the name
(ASM) only match up with the letters `ASM' that appear in those exact
positions (first three positions to the right of the only period).
Therefore, in this example, `*.ASM' will match up with
`SAMPLE.ASM,' 'ANOTHER.ASM,' `l.ASM,' and `.ASM'. It will
not match up with `SAMPLE,' 'ANOTHER.PRG,' `ASM.COM,' or
`ASM' (note that the last `ASM' is not an extension, because it is not in
three positions to the right of a period).

64 THE CP/M HANDBOOK WITH MP/M

Do not use the ERA command to practice filename matches - use
the DIR command instead. DIR will only list files that match your
filename match.

In practice, you will often want to create multiple copies of a file,
such as VERSIONI, VERSION2, VERSION3, or COPY1, COPY2.
To avoid confusion, remember to ERASE all unnecessary copies before
leaving the terminal.

SAVE

The SAVE command is used to store information from the TPA
(main memory). This command is more complex , and will be described
in detail later in this chapter.

THE TRANSIENT COMMANDS

Introduction

CP/M's ten standard transient commands are: SYSGEN, PIP, ED,
STAT, ASM, LOAD, DUMP, DDT, SUBMIT, and MOVCPM. All are
supplied with CP/M as COM files. They will be described separately.

SYSGEN

Recall from Chapter 1 that SYSGEN is used to copy CP/M from one
disk to another. In particular, it is used to copy a System Diskette. When
you first receive a System Diskette, and use it to bring up your CP/M
system, you should immediately make a copy of the system, and then
store the System Diskette in a safe place. You can use the PIP transient
command to transfer all of the `.COM' (and '.SYS') files to a new
diskette (see Chapter 3), but you also have to copy "the system" that
resides on reserved tracks of the diskette, in order to turn the new
diskette into a "System Diskette." The SYSGEN transient command
(program) can be used to do so.

The SYSGEN program turns an ordinary diskette into a System
Diskette (with "the system" residing on its reserved tracks). To do this,
SYSGEN brings "the system" into memory from the original diskette
(into memory means that it is brought into the program execution area
of the computer, called the TPA for Transient Program Area), and then
it writes on the diskette. SYSGEN brings "the system" into memory
and moves it to a new diskette; or, SYSGEN transfers whatever is
already in memory to another diskette.

CP/M AND MP/M FACILITIES 65

The sequence for using SYSGEN is:

A>SYSGENJ
SYSGEN VERSION n.n
SOURCE DRIVE NAME (OR RETURN TO SKIP) A
(if CP/M has been copied into memory, using
MOVCPM, for example , you can type RETURN in-
stead)
SOURCE ON A THEN TYPE RETURN)
(this is intended to leave you time to insert a diskette
with CP/M on it into the appropriate drive)
FUNCTION COMPLETE
(CP/M is now in memory, ready to be written on a
disk)
DESTINATION DRIVE NAME (OR RETURN TO
REBOOT) B
(place the new disk in B)
DESTINATION ON B THEN TYPE RETURN)
(CP/M is written on B)
FUNCTION COMPLETE
DESTINATION DRIVE NAME (OR RETURN TO
REBOOT))
(you could now type B and make one more copy. In
this case we finish by hitting RETURN.)

A>

Remember that the diskette in drive B now contains only CP/M. It
has no files (assuming that it was a fresh diskette). CP/M can be copied
onto a diskette that already has files on it; this will not damage the files.
If the diskette in drive B is empty, you should now copy the files
separately. If you want to copy all of the files from the diskette in drive
A to B, type:

A> PIP B :=A:*.*[V])

Otherwise , you can copy the desired files one at a time, as needed. The
format for this operation is explained in Chapter 3.

At this point, you should test your new System Diskette.
MP/M users: it is important to mention here that the above example,
which uses the PIP command to copy several files at once , will only copy
the files in the current user area . The System Diskette supplied can be

66 THE CP/M HANDBOOK WITH MP/M

copied using this form of PIP, because all of the necessary files are in
user area zero, which is the "current user area" if you never use the
USER command. (We recommend that you do not use the user area or
the USER command unless you have a multi-user system.) (See
"Enhancements in CP/M Version 2.2" in Chapter 3.)

SYSGEN can be used to make a copy of the system that can be left in
the TPA (Transient Program Area) and not transferred to a new
diskette. To do this, just hit `RETURN' (to reboot) when the message
`DESTINATION DRIVE NAME (OR RETURN TO REBOOT)'ap-
pears.

You can also use SYSGEN in conjunction with MOVCPM to con-
figure a new version of your system with a different memory size. In this
case, when the first message `SOURCE DRIVE NAME (OR
RETURN TO SKIP)' appears, just hit RETURN ()) and SYSGEN
assumes that the system is already loaded into the memory (the TPA).
When you use MOVCPM, you can load the system into memory in
preparation for this type of SYSGEN. This is described in Chapter 5.

PIP

PIP is the file transfer program, explained in detail in Chapter 3.

ED

ED is the editor, presented in detail in Chapter 4.

STAT

Using STA Tfor Display

STAT is used to display status or change device assignments. The
STAT command is a simple way to display available disk space. It can
also be used to display and modify device assignments.

The simple `STAT' command displays the sizes of remaining disk
space and space allocated to files. The simplest form of the STAT
command is:

A > STAT)

A:R/W, SPACE: 144K

A>

CP/M AND MP/M FACILITIES 67

This display shows that there are 144K bytes remaining on the diskette
in drive A, i.e., 144K bytes that are not used. Most 8-inch diskettes

hold only 224K bytes of file space. `R/W' tells you that the diskette
can be written on (i.e., you can create new files, overwrite, or delete
old files). `R/W' stands for "read-write," as opposed to `R/O', which
means "read-only." You cannot write on an R/O file, since it is
"write-protected."

Bytes and Records

A byte is an 8-bit location in memory (a bit is either "1" or "0").

128 bytes form a record (not necessarily a "data record," but a CP/M
file record). This is also the size of a sector on the disk. Eight records
equal 1024 bytes (or 1K). These particular values are used because they

can be expressed as powers of 2 (binary numbers), i.e., they can be
represented by a corresponding number of bits (n bits represent up to

2").
A 128-byte record is a useful convention for reading and writing sec-

tions of a file. Files exist on diskette as 16K "chunks" called
"extents." These "extents" are not contiguous (next to each other) on
the diskette. Each one always contains the starting address of the next
one, in other words, they are "chained." You never have to find them
yourself; the Basic Disk Operating System (BDOS), a part of the en-
tire system, handles file space allocation using file control blocks (this
is described in Chapter 5). Space allocation is dynamic-the system
allocates new space for the file as you (or your program) write records
to the file. You never have to specify a maximum length.

Assigning Devices With STAT

The STAT command provides useful information about the disks
(diskettes), the transient or "scratch-pad" memory (called the Tran-
sient Program Area, or TPA), and the system's device assignments. It

also enables you to change your device assignments and write-protect
your diskette drives. In version 2.2 of CP/M, and in MP/M systems,
you can also set indicators (like read-only) on files, receive additional
status information about file size and disk size, and receive informa-

tion about user areas.
The following form of STAT can be used to display a list of possible

device assignments for the generic (logical) names CON:, RDR:,

68 THE CP/M HANDBOOK WITH MP/M

PUN: and LST:

A > STAT VAL: d

The system responds by displaying:

CON: = TTY: CRT: BAT: UC1:

RDR: = TTY: PTR: UR1: UR2:

PUN: =TTY: PTP: UP1: UP2:

LST: = TTY: CRT: LPT: UL1:

Next to each logical device name (CON, RDR, PUN, LST), STAT gives
a list of possible physical names for that device. These names corres-
pond to names on the Intel MDS-800 system.

The physical device name can be used for a device that performs the
same basic functions; e.g., the PTP: device (paper tape punch) could
actually be the "record" (write) operation of a cassette recorder.

The actual device assignments can be displayed at any given time by
typing this command:

A > STAT DEV:

CON: = CRT:

RDR: = UR1:

PUN: = PTP:

LST : = TTY:

A>

This sample display shows that the CON : device is a CRT (Cathode Ray
Tube), the RDR : device is a user -defined reader (number 1), the PUN:
device is a paper tape punch device , and the LST : is a teletype device.

You may occasionally want to modify the four physical device
names. These assignments can be changed by using the following STAT
command:

STAT log: = dev:, log : = dev:....

CP/M AND MP/M FACILITIES 69

where log: is a logical device name (CON:, RDR:, PUN: or LST:) and
dev: is a physical device name (PTP:, CRT:, URI:, etc .). For example,
the command

A > STAT LST: = LPT:I

changes the LST: device to a lineprinter (LPT:), so that all copy opera-
tions to LST: will now go to the lineprinter (unless the system is reset).

Note that the CON: device must be an input/output device that can
send as well as receive data (e.g., a terminal with display and keyboard).
The RDR: must be a device that can at least send data (input), and the
PUN: and LST: devices must be able to receive data (output).

CPIM Version 1.4 and Later Versions

In CP/M version 1.4 and subsequent versions, a simple STAT com-
mand displays the number of bytes remaining in the current drive. You
can also obtain this information for other drives by using this format:

A > STAT B:J

BYTES REMAINING ON B: 192K

B: R/O

A>

The display shows that the diskette in drive B is `R/O', which stands for
"read-only." You can only read this diskette; any attempt to write will
result in the error message:

BDOS ERR ON B: READ ONLY

When you get this message in version 1.4, you need only hit a key on the
terminal keyboard (such as RETURN), and the diskette will be reset to
`R/W', which stands for "read/write." You can now read from and
write to this diskette.

You can reset the diskette to R/O (read -only) by executing the follow-
ing form of the STAT command:

STAT d: = R/O

where d: is any disk drive.

70 THE CP/M HANDBOOK WITH MP/M

To display the size of files, you use this form of STAT:

filename

STAT d:

filename match

where d: is an optional drive letter for files not on the current disk drive.
If you specify one filename, STAT will display the information for that
file. If you specify a filename match, STAT will match files and display
them alphabetically with the size information. The display below is a
sample:

A> STAT B:*.TXT I

RECS BYTS EXT D:FILENAME.TYP

8 1 K 1 B:SAMPLE:TXT

4 1 K 1 B:QUOTE:TXT

16

A>

2K 1 B :CHAPI.TXT

The RECS field shows how many 128-byte records were allocated to the
file (thus far), the BYTS field shows how many kilobytes were allocated
to the file (1K is 1024 bytes, and 128 times RECS equals the number of
bytes allocated, so BYTS is equal to the result of 128 times RECS divid-
ed by 1024). The BYTS field is the most accurate allocation figure.

The EX field shows the number of 16K "extents" remaining in the
file (the number in BYTS divided by 16.) In version 1.4, this may cor-
respond to the number of directory entries on a disk for the same file,
because one directory entry (one file control block) can only address up
to 16K. CP/M automatically creates more entries and file control
blocks as the file is extended.

CP/M Blocks and Records

CP/M always works with a minimum of 8 records when allocating
space. On IBM standard diskettes, a record has 128 bytes. This is why
the smallest amount of space allocated by CP/M is 1K, as shown in
the STAT example above.

Double-density diskettes, however, may have 256 records. In this
case, the smallest amount of space allocated by CP/M is 2K, even

CP/M AND MP/M FACILITIES 71

though the file may use only a small portion of that space. If a hard
disk is used , the smallest amount of space may be 4K.

STA Tin CP/M Version 2.2 and Subsequent Versions

The STAT program for version 2.0 or 2 . 2 of CP/M has a number of
enhancements , including more complex displays. If you merely type
`STAT) ', the display will correspond to that of earlier versions of
CP/M. Here is an example:

A>STAT*.*I

Recs Bytes Ext Acc

64 8K 1 R/W A:ASM.COM

8 1K 1 R/W A :BOOTHD.COM

20 3K 1 R/W A:CONFIG.COM

22 3K 1 R/W A:COPY.COM

6 1K 1 R/W A :SAVEUSER.COM

The form `STAT VAL: I', however , produces the following display:

Temp R/O Disk d: = R/O

Set Indicator : d:filename .typ $R/O $R/W $SYS $DIR

Disk Status : DSK: d:DSK:

User Status : USR:

Iobyte Assign

CON: = TTY: CRT: BAT: UC1:

RDR: =TTY: PTR: UR1: UR2:

PUN: =TTY: PTP: UP1: UP2:

LST: = TTY: CRT: LPT: U I-1:

Note that the last four lines are identical to the ones displayed in CP/M
version 1.4. The lines above them show possible STAT commands and

72 THE CP/M HANDBOOK WITH MP/M

the things that they will do. To set the R/O attribute on an entire disk,
you use the version of the STAT command `d: = R/O' (as in CP/M ver-
sion 1 .4), where `d:' is a drive specifier (A:, B:, . . ., Y:). To set the
$R/O, $R/W, $SYS or $DIR attributes of a file, you use the format of
STAT described in the section on CP/M version 2.2 and MP/M in this
chapter. To display the status of the current disk (diskette), or one or
another drive, you use the format `STAT DSK:' or `STAT d:DSK:'. To
display the current user area (and other user areas present in the
system), use the format `STAT USR:' (an example will be shown later
in this section).

In version 2.2, you can add the $S argument to the STAT command
to display the sizes of files by using the following format:

(filename
STAT d: $S

filematch

$S is an optional field that causes the size to be displayed. You can
specify either a filename (including extension), or a filematch (file-
name match for several filenames). You can optionally specify a
drive d: to display files on another disk drive. Here are some examples:

A > STAT PIP.COM $SI

Size Recs Bytes Ext Acc

55 55 12K 1 R/OA:PIP.COM

The `Size' field tells you how many records (128 byte units) are allocated
to the file,but this is a "virtual" size, because the file might not be using
all of the space yet. The `Recs' field sums up the number of records in
each extent (an extent is a 16K block). If the file was constructed sequen-
tially, these two fields would be identical (and they would correspond to
the `RECS' field in version 1.4 of CP/M).

The `Bytes ' field tells you the only accurate allocation figure for ran-
domly accessed files - the actual number of bytes allocated to the file.
This figure corresponds accurately to the `Size ' and `Recs' fields of se-
quential files. Randomly accessed files grow as data is written to them,
so the `Bytes' field gives the size in bytes allocated at a given moment,
and the ` Recs' field sums up the number of records in each extent -
although an extent might have unallocated "holes" that have not yet

CP/M AND MP/M FACILITIES 73

been filled with data . The `Size' field is more accurate for the "logical
number of records" in a file.

The `Ext ' field tells you how many extents (16K blocks) are allocated
to the file . Unlike version 1.4, a directory entry (file control block) on a
disk can address up to 128K bytes (8 logical extents) instead of only 16K
(1 logical extent). The figure displayed , however, corresponds to ver-
sion 1 .4's display to keep the two versions compatible.

The `Acc' field tells you what type of access is allowed - R/O (read-
only) or R/W (read -write). These types of access correspond to the
$R/O and $R/W file attributes described in the section on CP/M ver-
sion 2 .2 and MP/M (in this chapter). You can change the file attributes
by supplying one attribute as an argument (to replace `$S' in the defi-
nition above) to the STAT format . For example:

A > STAT PROG. ASM $RIO J

A > STAT FILE.TXT $R/WJ

The first STAT command puts the $R/O attribute (read-only) on file
PROG .ASM. The second STAT command assigns the $R/W attribute
(read-write) to file FILE.TXT.

The general format of this command is:

filename
STAT d:

filematch

$R/O

$R/W

$SYS
$DIR

The following is another example , where ED.COM is read-only,
PIP.COM is read-only and a system ($SYS) file, and DATA is a ran-
domly accessed data file that has the read -write attribute:

Size

48

Recs

48

Bytes

6K

Ext

1

Acc

R/O A:ED.COM

55 55 12K 1 RIO (A:PIP.COM)

65536 128 2K 2 R/W A:TEXT. NAD

74 THE CP/M HANDBOOK WITH MP/M

Note that PIP.COM is in parentheses to denote that it has the $SYS
(system) attribute. Files not in parentheses have the default $DIR
(directory) attribute . Attributes are described later in this chapter in the
section on CP/M version 2.2 and MP/M.

To display information about the current (or alternate) disk
(diskette), use the form `STAT d: DSK', where d is an optional drive
specifier (A, B, C, ... , P) for an alternate drive. Here is a sample
display:

A>STAT DSK:)

A:

3888:

486:

128:

128:

128:

16:

52:

Drive Characteristics

128 Byte Record Capacity

Kilobyte Drive Capacity

32 Byte Directory Entries

Checked Directory Entries

Records/Extent

Records/Block

Sectors/Track

2: Reserved Tracks

This sample display is for a double-density diskette in the current drive
(drive A, in this case). The total record capacity (128 bytes per record) is
3888 records (approximately 486K bytes). The kilobyte drive capacity is
listed as 486 (this does not count the reserved areas of the diskette). The
number of 32-byte directory entries corresponds to the actual number
of file control blocks (FCBs) stored on the diskette. The number of
"checked" entries is usually identical to the number of directory entries
for removable media (like diskettes), because the system must check en-
tries to detect a change in diskettes (this number is usually zero for non-
removable disks). The system checks entries, unless there is an interven-
ing warm start (f Q or cold start (system reset, or "cold boot"). The
number of records per extent ('Records/Extent') shown on the display
gives the addressing capacity of each directory entry; i.e., how many
records (128 byte segments) can be addressed by one directory entry (file

CP/M AND MP/M FACILITIES 75

control block on disk). The display states that 128 records can be ad-
dressed by a single directory entry (128 records equals 128 times 128
bytes, or approximately 16K bytes). The number of records per block
('Records/Block') shown on the display tells the number of records
allocated to each sector (16 records equals 2048 bytes, or 2K bytes per
block). This information is followed by the number of physical sectors
("blocks") per track ('Sectors/Track'), and the number of reserved
tracks on the disk (diskette). Our example shows 52 sectors (blocks per
track), and two reserved tracks for the system. Note that if you have a
large disk that is accessed by several logical disk drives, the number of
reserved tracks will be large , since the system uses these tracks to deter-
mine which areas of the disk should be accessed by which logical disk
drive.

To display information about user areas, use the form `STAT USR: d '.
The following is a sample display:

A > STAT USR:,!

Active User : 0

Active Files : 0 1 3 1 0

The `Active User' in this sample display is actually the number of the
user area you are currently "in." In MP/M, the current user area is
displayed along with the system prompt (e.g., `OA>' means current
drive A, user area 0); in CP/M version 2.2, you have to determine your
user area by using this form of STAT. In our example, the current user
area is zero (the default user area after a cold start or system restart).
The term `Active Files' indicates the number of user areas that currently
have files in them (on the current disk or diskette drive). If you move to
one of these user areas (using the USER command), you will find at
least one file in the user area. User areas without any files are not shown
in the `Active Files' display. User areas (and the USER command) are
described more fully in the section on CP/M version 2.2 and MP/M in
this chapter.

SUBMITTING A FILE OF COMMANDS FOR EXECUTION
(SUBMIT AND XSUB)

Introduction

It is sometimes useful or necessary to execute a sequence of CP/M
commands as if they were instructions in a program. For example, if a

76 THE CP/M HANDBOOK WITH MP/M

sequence is frequently used by an operator , it would be convenient to

give a name to the sequence , and execute it with a single command, just
like a program.

CP/M provides the SUBMIT transient command for conveniently
executing a sequence of several commands . The SUBMIT command ex-
pects to find a file with the extension '.SUB' that contains actual com-

mand lines that include arguments to be replaced by values at execution

time . The'. SUB ' file is created just like a text file, by using ED or any
other editor program , and lists command lines as they would be typed at
the terminal . For example , SAMPLE .SUB could contain these lines:

DIR $1:$21

PIP A:=1$:2$1

The `$1' and 12 ' are arguments . They are like variables in a program -
they will be replaced by actual values when you supply them at execu-
tion time (i.e., when you use the SUBMIT command). Here , the `$1'
argument is replaced by a drive letter for a disk drive , and the ` $2' argu-
ment is replaced by a complete filename (with the extension included, if
any).

In this example , the file SAMPLE .SUB is executed by using the
following SUBMIT command:

A > SUBMIT SAMPLE B FILE1.TXTJ

The SUBMIT program first looks for SAMPLE.SUB, and then starts
executing the commands . To execute DIR, it plugs the value `B ' into $1
and 'FILEI.TXT' into $2, and displays the filename in the directory
for drive B. Then it executes PIP to copy B:FILEI.TXT onto drive A,
using the same name.

The SUBMIT command takes the following form:

SUBMIT filename v 1 v2 v3 ...

where vl is the value to substitute for `$1' everywhere in the `.SUB' file,
and v2 substitutes for `$2' everywhere in the'. SUB' file, etc. SUBMIT
applies a' . SUB' extension on the filename supplied, so you do not have
to specify the '.SUB ' extension.

CP/M AND MP/M FACILITIES 77

When you use arguments ($ 1, $2, ...), you must use a dollar sign
followed by an integer number . The number must start at one for the
first argument , two for the next argument , three for the next, and soon.
Since you use a dollar sign to denote arguments , you need to supply two
dollar signs ($$) to have a normal dollar sign in a `. SUB' file (two dollar
signs become one in a '.SUB' file, while a dollar sign with a number
becomes an argument). You can also include a + character to denote a
CTRL-key combination (e.g., f C or + Z) in a `.SUB ' file - use the up
arrow character instead of the CTRL (Control). This is necessary
because in most cases you cannot hit any CTRL-key sequences in an
editor program while creating the '.SUB' file.
NOTE: no matter what drive you select to perform the SUBMIT opera-
tion , the `. SUB ' file will not be processed until you insert the diskette in-
to drive A (or use logical drive A) and reboot (warm start) the system (a
+ C is sufficient). You can specify an alternate drive for the '.SUB' file

in a SUBMIT command by preceding the filename with a drive
specifier, but the operation will not take place until the diskette with the
'.SUB' file is in drive A.

You can abort a SUBMIT operation in progress by hitting the
RUBOUT (DELETE) key. SUBMIT automatically creates a temporary
file '$$$.SUB' to hold the commands from the '.SUB' file; this file is
deleted when SUBMIT is finished, or if the system detects an error
while the SUBMIT operation is happening, or if you abort the SUBMIT
operation by hitting RUBOUT (DELETE). If, for some reason , this file
$$$.SUB still exists after an error has occurred, any system reboot
(warm start) will cause the system to execute the commands in $$$.SUB
(instead of waiting for your typed commands). If this happens, abort
the SUBMIT operation (by hitting RUBOUT) and erase the file
$$$.SUB.
NOTE: for programmers who write programs making use of the
SUBMIT facility: if your program takes over the CCP (Console
Command Processor) function of reading and interpreting console in-
put and system errors, you have to make your program erase the
$$$.SUB file SUBMIT creates. Also, if you execute your program
through a SUBMIT operation, you must make sure that the $$$.SUB
file is either erased (if you do not want to keep doing the SUBMIT
operation) or preserved for future use (by renaming it to something
else). Any new SUBMIT command will replace the existing $$$.SUB
file. You can, of course, imbed a SUBMIT command within the'. SUB'
file as "just another CP/M command." This allows you to "chain" to
another set of submitted commands.

78 THE CP/M HANDBOOK WITH MP/M

SUBMIT With XSUB

In CP/M version 1.4, SUBMIT creates the temporary file $$$.SUB
from the'. SUB' file you supply, and then the CCP (Console Command
Processor) executes each line of $$$.SUB as if it was a typed command.
(The CCP is the part of the system that reads and executes what you
type as a command.)

In CP/M version 2.2, there is an added capability: the XSUB pro-
gram (transient command). The XSUB program allows you to include
input (i.e., commands) to programs (other than the CCP) that make use
of CP/M's "buffered input" operation. You do not have to know
how to use buffered input; you only need to know whether the program
you want to execute and supply input to uses buffered input. The ED,
DDT and PIP programs all do. Therefore, for example, you can use ED
commands in a '.SUB' file as input to the ED program, and auto-
matically perform a complicated ED operation repeatedly with one
SUBMIT command.

Here is an example of such an operation. The file DOTHIS.SUB con-
tains the following lines, including the `XSUB':

XSUB Execute XSUB

DIR $1.* Display files

ED $112 Use ED on file specified

#A Do an ED append to fill buf-
fer

B Go to beginning of buffer

Copyright 1980, Sybex Insert copyright notice

E Terminate ED

PIP 1$.OLD = 1$.BAK Make copy of old backup
file, when CP/M system re-
turns after ED terminates

DIR $1.* Display all files again

A > SUBMIT DOTHIS SAMPLE TXT I

CP/M AND MP/M FACILITIES 79

In this example, SUBMIT first tells the CCP to execute XSUB. The
XSUB program relocates to the area directly below the CCP, and stays
active until the next cold start (system reset or cold "boot"). While
XSUB is active, it displays the message `XSUB ACTIVE' above the
system prompt; and as long as there are commands in the file
DOTHIS.SUB, XSUB executes them (unless you intervene with a f C).

Next, XSUB executes the DIR command to display the files
associated with SAMPLE. `SAMPLE' is a substitute for `1$' and
`TXT' is a substitute for `2$' in DOTHIS.SUB. XSUB executes the ED
program on the file SAMPLE.TXT. XSUB continues to provide input
to the ED program (using buffered console input): first the #A com-
mand to tell ED to append the entire file (65535 lines) into the edit buf-
fer, next, the B command to move ED's character pointer to the begin-
ning of the buffer, then the I command to insert the text "Copyright
1980, Sybex" at the beginning of the buffer, and finally, the E com-
mand to save the edits and terminate the ED program. (ED commands
are described in Chapter 4.)

The XSUB program remains active after ED terminates, executing
the PIP command to copy SAMPLE.BAK into the new file
SAMPLE.OLD (making a backup copy of SAMPLE.BAK). XSUB
then executes the DIR command to display all of the files associated
with the name SAMPLE.

When the submit file is exhausted for commands, the CCP takes over
and waits for more commands to be typed at the terminal. However, the
XSUB program remains active (the message `XSUB ACTIVE' still oc-
curs after each command execution) unless a program is executed that
intentionally overwrites the area occupied by XSUB (i.e., directly
below the CCP, or until you do a cold start or system reset). While
XSUB is active, the SUBMIT command can be used to execute other
'.SUB' files. The other '.SUB' files do not have to have `XSUB' as a
command line if XSUB is already active. Therefore, you can create
'.SUB' files without XSUB to keep them compatible with earlier ver-
sions of CP/M, and execute XSUB as a command whenever you want it
to be active while submitting '.SUB' files.

ASSEMBLING (ASM), LOADING (LOAD), AND DUMPING
(DUMP) PROGRAMS

Introduction

In the world of assembly language, ASM, LOAD, and DUMP are
standard terms for operations that allow assembly language programs

80 THE CP/M HANDBOOK WITH MP/M

to work like commands. You can use the commands ASM and LOAD
to turn an assembly language source program (written into a text file)
into a do-it-yourself transient command, and you can use DUMP to
display the contents of the transient command. The term "dump" is
often used to describe large-scale copy operations (e.g., the "daily
dump" operation on minicomputers and mainframes) and the act of
sending the contents of a program to the printer. CP/M's DUMP com-
mand only "dumps" the memory area of a program (in hexadecimal)
onto the terminal display. To send a file to the printer, or to do large-
scale copy operations, you must use the PIP transient command.

To write assembly language programs for a CP/M (or MP/M)
system, you need to know the host computer's assembly language.
Standard CP/M runs on microcomputers using the Intel 8080, 8085 or
8086, or Zilog Z80 or Z8000 microprocessors. Other software vendors
offer CP/M on 6502-based computers like the Apple and Pet.

Assembling

The ASM command executes Digital Research's 8080 Assembler,
residing in the file ASM.COM. This assembler program translates an
assembly language source file (written in the assembly language of the
8080) into a machine language file. (See Figure 2.7.) A machine
language file contains instructions in binary - the language of the
microprocessor; however, most displays or printouts of the file will be in
hexadecimal notation.

(.PRN)

Figure 2.7: The Assembly Process

CP/M AND MP/M FACILITIES 81

There are other assembler programs that can perform assembly
languages for other microprocessors, and there are more powerful
assemblers for the 8080 as well. These assemblers would all exist as
`.COM' files in your system, and you can execute any one in the same
manner as you would execute ASM.COM.

The assembler program assembles a source file that has an `.ASM'
extension (e.g., PROG.ASM). The assembler then uses the `.HEX' ex-
tension to denote the assembled machine language file it creates (e.g.,
PROG.HEX). The assembler also uses a `PRN' extension (e.g.,
PROG.PRN) to create a printable file. You can send this'. PRN' file to
the printer to obtain a printout of the program. The `.PRN' file con-
tains the lines from the original `.ASM' source file, along with error

messages and the resulting machine code (in the standard Intel hex-

adecimal notation).
The'. HEX' machine-code file produced by ASM is now ready to be

loaded into the system (using the LOAD command) and become a tran-
sient program that is executed as a command.

To execute ASM, you can use one of these forms:

1. ASM filename

2. ASM filename.shp

In both forms, you only have to specify the primary name of the source
file. The file must have an `.ASM' extension - the ASM program ex-
pects to find an `.ASM' extension for any filename specified. ASM will
not assemble a file that does not have an `.ASM' extension.

The first form (1.) simply executes the ASM program to assemble the
file named by "filename." ASM assumes that the file is on the current
drive, and that it should put the `.HEX' and `.PRN' files on that drive.

For example:

A > ASM PROG 1

This command executes ASM (which is assumed to be on drive A as
ASM.COM) to assemble file PROG.ASM (which is also assumed to be
on drive A). ASM will produce files PROG.HEX and PROG.PRN and
also put them on drive A.

82 THE CP/M HANDBOOK WITH MP/M

The second form (2.) allows you to specify disk drives other than the
current drive if the source file is on another drive, you want to put the
`.HEX' or `.PRN' files on another drive, or you want to tell ASM to
skip the operation of creating the `.HEX' or `.PRN' file.

In the format, shp consists of three letters preceded by a period
following the filename argument. The s may be any of the letters A
through P. The h may be any of the letters A through P, or Z; the p may
be any of the letters A through P, or X or Z. The s is a letter that in-
dicates which drive (A, B, . . . , Y) contains the disk with the source
file. The h is a letter that indicates which drive (A, B, . . . , Y) should
receive the `.HEX' file, or, if the letter `Z' is used, that tells ASM to skip
creating the `.HEX' file, and only generate the `.PRN' file. Thep is a
letter that indicates which drive (A, B.... W, Y) should receive the
`.PRN' file. If an `X' is used, that sends the `.PRN' file only to the
display of your terminal, or, if a `Z' is used, that tells ASM to skip the
function of creating the `.PRN' file and only create the `.HEX' file.

Here are some examples of the second form:

A > ASM PROG1.ABZI

This command assembles file PROG 1.ASM, which is the source file on
drive A. It also creates PROG 1. HEX on drive B (and thus skips the pro-
cess of creating PROGI.PRN).

A > ASM PROG2.BZXI

This command assembles file PROG2.ASM, which is the source file on
drive B, and sends the PROG2.PRN file to the display of the terminal
(without creating PROG2.HEX).
NOTE: ASM's error messages may take the form of an assembly
language source line, in which a letter indicates an error code. (These
codes are explained in the assembler's documentation.) Errors are cor-
rected by modifying the program under the debugger DDT (or another
debugger), or by correcting the source file and reassembling. These
ASM errors are also flagged in the `.PRN' file. Other errors that can oc-
cur are shown in Figure 2.8.

CP/M AND MP/M FACILITIES 83

NO SOURCE FILE PRESENT

NO DIRECTORY SPACE

SOURCE FILE NAME ERROR

SOURCE FILE READ ERROR

OUTPUT FILE WRITE ERROR

CANNOT CLOSE FILE

-ASM cannot find the source file, or you

specified a file that doesn't have an '.ASM'

extension.

- The disk (diskette) directory is full; erase non-

essential files (or make copies) and try again.

- Improperly typed filename to the ASM

command. You cannot use filename matches

in ASM commands.

- Source file cannot be read by ASM for some

reason . Use the TYPE command to find the in-

correct line in the source file.

-Output file ('.HEX' or '.PRN' file) cannot be

written out to disk (diskette); most likely

because the disk (diskette) is full.

-Output file ('. HEX' or '. PRN' file) cannot be

closed (updated); check to see if the disk

(diskette) is write-protected (i.e., read -only).

Figure 2 .8: Assembly Errors

Loading

When you have a `.HEX' file produced by ASM (or another
assembler), you can turn it into a `.COM' file (executable transient
command) by "loading" it into the system using LOAD. (See Figure 2.9.)

CORRECT

OBJECT

CODE

(PROG. HEX)

Figure 2 .9: Loading the Object Code

EXECUTABLE

COMMAND

(PROG. COM)

84 THE CP/M HANDBOOK WITH MP/M

The LOAD command is itself a transient command, existing as
LOAD.COM. You execute it by typing `LOAD', followed by a
filename of a `.HEX' type file, as in the following example:

A > LOAD PROGI

This command looks for PROG.HEX on the current drive, creates a
memory-image of this file (in hexadecimal format), and calls the new
file PROG.COM. This new program can be executed by typing
`PROGJ '.

Since LOAD creates a `.COM' file, you only have to LOAD a
`.HEX' file once. The `.HEX' file must contain valid Intel "hex-
adecimal format" that is created by ASM or any similar assembler.

You can also load files from another disk drive by specifying the drive
as part of the filename. For example:

A > LOAD B:GAMESJ

This command loads the file GAMES.HEX in drive B and creates
GAMES.COM on drive A (the current drive).

Since you can use PIP to transfer files in "hexadecimal format"
from readable devices, you can also LOAD a file that was assembled at
some earlier time and was recently transferred to your system via PIP.

NOTE: for assembly language buffs: the'. HEX' file must have valid
hexadecimal records that begin at 100H ('H' for hexadecimal, i.e., ad-
dress 100,6). 100H is the beginning of the TPA (Transient Program
Area). Addresses of the'. HEX' file must be in ascending order (gaps in
unfilled memory regions are filled with zeros by LOAD as it reads the
hexadecimal records). Thus, LOAD is only used to create'. COW files
that execute in the TPA. Programs that will not occupy the TPA
(special programs) can be loaded by using DDT (or another debugger).

Dumping

The DUMP command displays the contents of a file at the terminal in
hexadecimal form. Any file can be DUMPed, since all data is a binary
value that can also be represented in hexadecimal (base 16) form. All
hexadecimal numbers end with'H' in this book, just like they do in Intel
mnemonics. The `H' stands for the 16 subscript (e.g., 10H is 10,6).

In a DUMP command you must give the entire filename (including

CP/M AND MP/M FACILITIES 85

extension):

A > DUMP B:PROG.HEXJ

The example above displays the contents of PROG.HEX (which is on
drive B).

EXECUTING, DEBUGGING (DDT), AND SAVING (SAVE)
PROGRAMS

Executing

Once a `.HEX' program is LOADed, and a `.COM' file is created for
it, you can execute the program by typing the filename as a command
(without its `.COM' extension). For example:

A > PROGJ

PROG.COM is assumed to be on drive A.
You could also execute the program from another drive:

A > B:1

B > A:PROGJ

When you execute a program or a transient command , it is brought into
the computer' s main memory ("scratch-pad" memory, or TPA).

Debugging

"Bugs" are errors in a program. The errors flagged by ASM (or
another assembler), PIP or LOAD, or the "run-time" errors (errors
while executing) can usually be corrected by using a "debugger" pro-
gram such as DDT. DDT.COM is supplied with the standard version of
CP/M (or MP/M). DDT will bring any file into main memory and per-
form the operations available as DDT commands. DDT can be used to
correct errors, or to bring a file into the main memory in order to save a
memory image of it (by using SAVE). To execute DDT on any file, use
the following form:

DDT

filename. HEX

filename.COM

86 THE CP/M HANDBOOK WITH MP/M

You can specify a drive letter as part of the filename (if the file exists on
another drive).

In both cases, DDT replaces the CCP (Console Command Processor)
as the "operating system" that reads the command line-by-line. The
CCP is described in Chapter 5. When the DDT program replaces the
operating system's CCP program, the DDT program takes on the job
of reading the command line. (Like the ED program, DDT has its own
set of commands.)

If you specify a filename (of type'. HEX'or `.COM') with DDT, then
the debugger brings the program into the TPA (wiping out whatever
was there before). If you do not specify a filename , DDT will occupy
the TPA, and wait for a DDT `I' command to input a file to the TPA.

When executed, DDT displays a sign-on message (which can be dif-
ferent for each installation), and then its prompt: `-'. You can now type
DDT commands (use the documentation supplied with DDT). In later
versions of CP/M, DDT also displays the `NEXT' and `PC' values that
are discussed with DDT's `R' command below.

Several DDT commands will be discussed here: the I (input) com-
mand, the R (read) command, and the GO command (stop debugger
and return to the operating system).

The I command inputs a `.HEX' or `COM' file into the TPA. Essen-
tially, it is the same operation that is performed when you supply a
filename of `.HEX' or `.COM' type with the DDT command. You can
also add another file to the file existing in the TPA by using this com-
mand.

The R command reads the file in the TPA and displays a "load
message" that consists of:

NEXT PC

nnnH pc

This display occurs automatically in later versions of DDT. The number
under the NEXT column is the next address following the loaded pro-
gram . You use this value to calculate the number of "pages" (256-byte
blocks) to use in a SAVE command. The number is in hexadecimal
notation.

The GO command terminates DDT, but leaves the program in TPA so
that you can use the SAVE command to save a memory image of the
file. Just type:

G01

CP/M AND MP/M FACILITIES 87

Saving

The SAVE command takes one or more "pages" of the TPA (main
memory) and places it on a disk as a file with the name that you specify.
(Note that one "page" is 256 bytes.) (In MP/M, this operation is im-
plemented within the debugger program - DDT or SID.)

You use the SAVE command to create a memory image file of
whatever is currently in the TPA (the most recently executed
program). If you use DDT on a program, and it starts working correct-
ly) or even if part of it works correctly), you will want to SAVE it as a
file that can be copied, debugged, or executed.
NOTE: in version 1.4, you cannot perform two consecutive SAVEs on
the same contents of the TPA, because the first SAVE causes a directory
operation that changes several areas of the TPA. In version 2.2,
however, this problem has been corrected - you can perform two con-
secutive SAVEs on the same TPA contents.

The SAVE command takes this form:

SAVE p filename

You supply the number of memory pages as p (a decimal number). p is
calculated by using DDT and DDT's R command to display the address
under the NEXT column - the next (higher) address that follows the
program in the TPA. This address is actually the last address of the
TPAplus 1. Therefore, if you subtract 1 from this displayed value (sub-
tracting in hexadecimal arithmetic), you will have the last TPA address
(end of the program), which you can convert to "pages" in decimal.

An easy method for converting the NEXT address into the value for p
is: if the NEXT address ends in two zeros (e.g., 1200H), subtract 1H
('H' is for hexadecimal) to get 11FFH, then ignore the last two digits
(`FF) and convert 11H to decimal (1 x 16° = 1, and 1 x 16 = 16, so 11H
= 17, °). If the NEXT address does not end in two zeros, do not subtract
1H from it; simply convert the first two digits (e.g., 1205H becomes
12H, which equals 18 pages).

Here is an easy example:

(Value under NEXT in DDT's R command display):

3FFH

NOTE: `F' is the decimal value " 15" in hexadecimal notation. `H'
stands for hexadecimal , and is not a digit.

88 THE CP/M HANDBOOK WITH MP/M

To convert to pages (256-byte blocks), ignore the first two digits 'FF'
and use the digit `3'. This is the "high order byte," and can be expressed
as 3H. 3H converted to decimal is 3,°. Therefore, you use 3 as the
decimal value for pages in the SAVE command.

Here is a more difficult example:

(Value under NEXT in DDT's R command display):

1 DOOH

-1H

1CFFH

NOTE: D is the decimal value `13 '. Subtract lH because ` 1DOOH' ends
in two zeros . D (13) becomes C (12).

To convert to pages, use the high order byte `1C' and convert it to
decimal:

CH = 12 times 16° = 12

+ 10H = 1 times 161 = 16

=28

NOTE: the decimal value 28 equals the number of pages of memory
between addresses 100H (start of the TPA) and 1CFFH.

Here are examples of SAVE commands:

A SAVE 4 PROG.COMJ Saves memory from 100H
through 4FFH and puts it in
PROG.COM on drive A. Next
higher address after 4FFH is
500H.

B SAVE 10 KLUDGE.COMJ Saves memory from 100H
through OAFFH to file
KLUDGE.COM on drive B.
Next higher address after
OAFFH is OBOOH . AH is 10
decimal.

CP/M AND MP/M FACILITIES 89

A SAVE 40B:WORKS.COM j Saves memory from 100H
through 28FFH to the file
WORKS.COM on drive B.
Next higher address after
28FFH is 2900H . 28H is (2
times 16) + 8 = 40 decimal.

CP/M VERSION 2.2 AND MP/M

An Introduction to MP/M

MP/M is an operating system designed for time-sharing. A time-

sharing system can execute several processes or programs simultaneously.

However, the simultaneity is only apparent. In fact, the computer
executes one user program, and then another in rapid succession, so
that each user has the impression that he/she is the only one using the
computer.

Therefore, when MP/M is used at a single terminal, the system
essentially behaves like a single-user CP/M system. MP/M offers ad-
ditional facilities, however, by allowing a single user to execute several
programs simultaneously. For example, programs may be attached to
and detached from the console, allowing a single user to interact with
the console while other programs are executing.
NOTE: if you plan to use MP/M as a single-user, single-program
facility, you do not need to know about MP/M. Reading the text on
CP/M version 2.2 should fulfill your needs.

One of the problems to be solved by a time-sharing system is program

scheduling. Each program should be scheduled to run in turn on the

processor. The round-robin scheduling technique is the simplest one
used to do this. With this technique, each program gets an equal slot
of computer time, in turn. This technique is illustrated by a rotating

pointer in Figure 2.10.

In order to make efficient use of the processor, however, some
programs (or processes) should be run before others. In any good
scheduling system, each process must be equipped with a priority level

that will determine when it will run. For example, when data becomes
available from the disk, it should be read promptly by a transfer pro-
gram, or a long delay will be incurred as the head moves past the proper
point on the disk. This transfer process should have a high priority.

90 THE CP/M HANDBOOK WITH MP/M

User 8

User 7

User 6

User 5

User 2

^ -N

User 3

User 4

Figure 2.10: Round Robin Scheduling

Conversely, a process that prints on a slow printer can be delayed by a
few milliseconds, or even seconds, at no great loss. Therefore, the
printing process should generally have a low priority.

In order to set priorities, two classes of processes are usually distin-
guished: those that perform input/output functions (I/O operations),
and those that perform computations, (CPU operations).

Whenever a process executes on the CPU (the processor), it may
request an input or an output operation. This type of operation is very
slow by CPU standards, as it typically requires several milliseconds,
and a CPU instruction operates in microseconds. When an I/O opera-
tion is requested, the process in execution is generally blocked, and
becomes dormant. An I/O operation is then started. I/O will proceed
concurrently with the CPU. When the I/O operation is completed, it
will awaken the original dormant process. The CPU process then
resumes its position in the scheduling list. It has become active again.

CP/M AND MP/M FACILITIES 91

A multi-level processor priority list is shown in Figure 2.11. While
the highest priority is usually labeled as zero, the actual priority de-
creases as the priority number goes up.

In Figure 2.11, process 10 will execute next, and then process 23.

PRIORITY 0
(highest)

Process 10

Process 32

Process 4

Process 1

Process 23

Process 37

Process 21

Figure 2 .11: A Four-Level Priority List

Process 2

While process 23 is executing, a new process could be entered at
priority 0 (see Figure 2.12). In this case, process 40 will execute next.
When all processes at level 0 have completed execution, those at level 1

will execute, and so on.
A process has not been formally defined here because each operating

system uses a somewhat different definition. A process may be a pro-
gram, or a subprogram, or other program entities. Thus, a user may
activate a variety of processes.

In the example in Figure 2.11, only active processes are shown. A

similar list is maintained for dormant processes that have been blocked.

When awakened, a dormant process will become active, and enter the

active list.

92 THE CP/M HANDBOOK WITH MP/M

PRIORITY 0 No Process 23 Process 40

Figure 2.12: A Now Process Is Entered at Priority 0

The scheduling system that has been described is generally used for
the processor. However, competition may take place for other scarce
resources within the system, such as the disk or the printer.

Generally, processes will queue up for the printer and will be serviced
on a first-come first-served basis. This is called a FIFO list (First-in
First-Out). The corresponding scheduling program is called a spooler.

Similarly, requests for the disk are generally queued up. However, a
program will attempt to optimize disk access by reading as many sectors
as possible while moving the head as little as possible. As a result, pro-
cesses in the disk-waiting queue may be serviced in any order, if the
block they need comes up under the disk head.

Simultaneous processes sharing common resources require additional
mechanisms:

- The processes must be synchronized. This is done by flags and
interrupts.

- The processes must operate in a reasonable order when competing
for a common device. This is the function of a scheduler program
for that device.

- Protection mechanisms must be provided so that a single process
malfunction does not damage other processes.

- The memory space must be allocated efficiently so that processes
occupy memory space only when needed.

MP/M is a simple time-sharing system that provides a good set of
facilities. However, in order for a time-sharing system to reside in a
limited amount of memory, many of the resources have been provided

CP/M AND MP/M FACILITIES 93

for in a simplified manner:
- MP/M will execute up to eight processes
- Each process has its own fixed memory segment (48K)
- Files may have one of the four attributes:

- R/O (read only)
- R/W (read/write)
- SYS (system-file will not be listed in the directory)
- DIR (directory-removes the SYS attribute)

Introduction to CP/M 2.2

The new version of CP/M has several optional enhancements de-
signed for an easy transition to MP/M, a multi-user system. In a multi-
user environment, where several people are using the same machine at
the same time, more protection is needed for your files, because you

have to share your system's resources - the printer, the disk (or
diskette) drives, and the computer (CPU) itself. If you have CP/M ver-
sion 2.2, you can use several features actually designed for MP/M, and
still maintain compatibility, that is, your files and programs will be
usable on both systems.

The new features are:
• User areas and the USER command to segregate your files from

other user 's files
• File attributes (assigned by using STAT) to protect your files from

accidental deletions or overwrites, including an attribute to store a
file secretly.

NOTE: if you do not use these features , your files and programs will be
compatible with previous versions of CP/M as well as CP/M version
2.2 and MP/M.

In addition to these features, MP/M has features that are not found
in CP/M version 2.2, and only used in multi-user environments:

- CONSOLE command to display the current console (terminal)
number in a system with more than one terminal

- DSKRESET command to regulate changing of disks in a multi-

user system
- GENMOD command to produce a relocatable program (essential

in multiprogramming systems)
- SPOOL command to regulate traffic to the lineprinter

(STOPSPLR is used to cancel a SPOOL)
- SCHED command to schedule programs to execute at a later time
- TOD command to display or set the time and the date

94 THE CP/M HANDBOOK WITH MP/M

- Ability to detach a running program from your terminal and at-
tach to it later; use along with MPMSTAT to display system in-
formation.

MP/M 1.0 Characteristics

MP/M requires at least 32K bytes of memory. MP/M can handle
up to sixteen consoles and sixteen disks, each disk drive containing up
to eight megabytes of information. MP/M allows up to eight memory
segments of 48K.

User Areas and the USER Command

In CP/M version 2.2 and MP/M, you can segregate files on a single
disk (diskette) into "user areas" numbered zero to fifteen . The files are
not actually segregated - they just need to be referred to by using a
"user area number" that is internally prefixed to their names. The
assumption is that you would choose a user area , and put your files in
that same area on all of the disks (diskettes). Figure 2.13 demonstrates
this placement.

Disk A Disk B Disk C

user 0 system files system files system files

user 1

user 2
(you) your files yourfiles your files

user 4

Figure 2 . 13: File Placement in User Areas

When initially accessing MP/M, the following message appears on
each console:

MP/M
nA>

where n is the user number for that console. n is 0 for console 0, 1 for
console 1, etc. For example, the display on console 3 (assuming that 4
consoles or more are connected) is:

CP/M AND MP/M FACILITIES 95

MP/M
3A>

Any user number in the range 0 to 15 may be assigned to any console
using the USER command described below.

The `A' refers to disk drive A, and may be changed at will, just like
in CP/M.

How to Put a File Into a User Area

When you are " in" a "current user area ," the files that you create
are put into that user area, and you must be "in " that user area to access
the files . If you need to "get" a copy of a file that is in another user
area , use the PIP parameter G provided in CP/M version 2.2 and
MP/M (described in Chapter 3).

When you first bring up CP/M version 2.2 or MP/M, your current
user area is user area zero . In MP/M, this is emphasized by the system
prompt, `0A >' (for drive A, user 0). In CP/M version 2.2, you must
use the form of STAT, `STAT USR: J ', to determine the current user
area number.

How to Move to Another User Area

If you stay in user area zero (i.e., if you do not use the USER com-
mand), your files and programs will be compatible with earlier versions
of CP/M and MP/M's user area zero . If you wish to go to another
user area , you must use the USER command; the files you create in
that user area must be copied to user area zero (using PIP ' s G para-

meter) to be compatible with earlier versions of CP/M.

The USER command ' s format is:

USER n

where n is an optional argument in MP/M, but necessary in CP/M ver-
sion 2.2. In both systems, if you supply an n in the range of zero to fif-
teen, the USER command will move you to that user area. For example,

OA > USER 21

2A >

96 THE CP/M HANDBOOK WITH MP/M

NOTE: this is an MP/M example. In CP/M you must use `STAT USR:1 '
to display the current user area. In both cases, the user is moved to
user area 2 of the same disk drive.

When you move to another user area, you stay in that user area until
another USER command is performed or until the system is reset (cold
start). After a cold start, you are always put in user area zero.

Points to Remember About User Areas

A user area does not become active until you move to it. Note,
however, that the disk drive remains active wherever you go within it -
and user areas are within the logical disk drive. User areas are really
designed with large disks in mind (hard disks may be used). The user
area ceases to exist when you erase all of the files, including files with
the $R/O and $SYS attributes (discussed later in this chapter). You
erase all of the files by using the ERA command with the filename
match which erases all files in the current user area except files
with the $R/O (read-only) attribute.

Since the ERA command only erases files in the current user area,
you can only erase files in one user area at a time, unless you write a pro-
gram that erases everything on the disk (diskette). The form `ERA *.* 1 '
only erases files in the current user area (the one that you are currently
"in"). It will not erase files with the $R/O attribute (read-only) until
you change their attribute to $R/W (read-write).

If you use the DIR command to see if any files still exist in the current
user area, you might be missing the files with the $SYS attribute (called
"system files"). These files will not appear in a DIR display, but will
only appear in parentheses in a display produced by `STAT *. * $S 1 '.
Use the STAT command to change file attributes (discussed next) in
order to erase all of the files and close out a user area.

File Attributes

Ordinarily, your files are already "directory" files that can be read or
written to. Optionally, you can prevent a file from being listed in a DIR
display by replacing the "directory" attribute with a "system" at-
tribute. You can also prevent a write or delete operation to a file if you
change its "read-write" attribute to "read-only."

In CP/M version 2.2 and MP/M, each file is created with the $DIR
attribute to signify that it is a "directory file" which the DIR command
can find and display. Each file is also created with the $R/W (read-
write) attribute to signify that you can read and write to (and erase) the
file.

CP/M AND MP/M FACILITIES 97

When a file has the $SYS attribute (the opposite of $DIR), the DIR
command and the PIP command cannot find it. (PIP cannot find it
unless you use PIP's R parameter, described in Chapter 3.) The $SYS
attribute is used to "hide" files from DIR and PIP, and thus prevent
other users of the system from knowing about or copying the file. Note,
however, that the STAT command can be used by other users to display
even "system" files, so this protection (from PIP and DIR) is not

enough. You must also affix the $R/O (read-only) attribute to the file
(the opposite of $R/W), and then hide the documentation for the STAT
command. Essentially, these files are only protected against your ac-

cidental misuse of the system. If you misuse your disk media, then you

have another problem.
NOTE: the ERA command will find "system" files, but will not delete

read-only files. You have to use STAT to change the $R/O attribute to
$R/W in order to delete any $R/O file.

Here are examples using STAT to change and display file attributes:

A > STAT SAMPLE.TXT $R/OI

This command changes SAMPLE .TXT to be read-only.

A > STAT B:TEMP $R/WI

This command changes TEMP on drive B to be read-write (from read-

only).

A > STAT SAMPLE.BAK $R/Od

A > STAT SAMPLE.BAK $SYS,

This command changes SAMPLE. BAK into a read-only and "system"

file, one not found by DIR:

A > DIR SAMPLE.BAKJ

NOT FOUND

A > STAT SAMPLE.* $S,(

Size Recs Bytes Ext Acc

48 48 6K 1 R/O A:SAMPLE.TXT

48 48 6K 1 R/W A:SAMPLE.JNC

48 48 6K 1 R/O (A:SAMPLE.BAK)

98 THE CP/M HANDBOOK WITH MP/M

The file SAMPLE.BAK is in parentheses because it has the $SYS at-
tribute, as well as the $R/O attribute (shown in the `Acc' column, and
representing a file access method). The other files have the $DIR at-
tribute, and SAMPLE.TXT has the $R/O attribute (read-only), while
SAMPLE.JNC has the $R/W attribute (read-write).

If you copy a read-only or "system"file, PIP creates the new copy
with the default read-write ($R/W) and directory ($DIR) attributes.
You must use STAT to actually assign new attributes.

MP/M Operations

In a multi -user MP/M system, each user has a terminal , and can
operate the system. An MP/M system with only one user can be iden-
tical to a CP/M version 2.2 system. With more than one user, however,
MP/M can appear as a separate CP/M system for each user. In some
environments, it may be necessary to have a "system operator" handle
all resources and manage the system for users. A system operator might
perform the following operations:

• Change diskettes (use the DSKRESET command)
• Spool files to the lineprinter or other device (SPOOL and

STOPSPRL commands)
• Schedule programs to be executed at a later date (SCHED com-

mand)
• Set the time and date (TOD command)
• Display information about the system (MPMSTAT command).

DSKRESET (MP/M)

Although you can walk up to any diskette drive and take out a
diskette, this would not be wise in an MP/M system, where other users
might be accessing files on the diskette. MP/M has the DSKRESET
command to inform other users that someone wishes to change a
diskette. DSKRESET, like other MP/M commands, exists on the
system diskette as a `.COM' or `.PRL' ("page relocatable") file, and
can be executed by simply typing its primary name:

OA > DSKRESETJ

Confirm reset disk system (Y/N) ?Y

The message "Confirm reset disk system" appears on every terminal
hooked up to the system. Each user must respond with a `Y' (for yes) to
allow a disk reset.

CP/M AND MP/M FACILITIES 99

Spooling (MP/M)

When more than one user wants to send files to the printer, or when
one user wants to send several files, the user can spool (lineup , one after
another, in a queue) the files to the device. However, only text (ASCII)
files or data files filled with ASCII text can be sent. (Note that source
files, listings, `.PRN' files and any files created by a text editor like ED,
or a word processor, are all text files.

To send files to the spool queue, use the SPOOL command, which
takes the following form:

SPOOL filename filename filename ...

The first filename is required ; the subsequent ones are optional. The
filename must include the extension , if any . Here is an example:

OA > SPOOL PROG. PRN SAMPLE .TXT TEMP.LSTJ

This command sends the files PROG.PRN, SAMPLE.TXT, AND
TEMP.LST to the LST: device (usually a printer).

To stop a spool operation and empty the spool queue, use the com-
mand STOPSPLR. Here is an example:

OA > STOPSPLRJ

MP/M has the ability to keep time, and provide the correct date, if
you set these values properly. Using the time and date, you can schedule
programs to run at a specified time on a specified date. The system con-
stantly monitors the time and date to manage scheduled programs.

Scheduling Execution (MP/M)

The SCHED program can be used to schedule execution of another
program. The SCHED program has either a `.PRL' or '.COM' exten-
sion. When you execute it as a command, you must supply the
arguments shown in the following format:

SCHED mm/dd/yy hh: mm program

Supply your date as mm/dd/yy, your time in hours (hh) (expressed as
zero to twenty-four), and minutes (mm) (expressed as zero to sixty).
Your program is assumed to be a filename with a `.COM' or `.PRL'
(page relocatable) extension (which it is not necessary to supply). Here

100 THE CP/M HANDBOOK WITH MP/M

is an example:

OA > SCHED 12/31/80 23:59 EIGHTY,

The program EIGHTY.COM (or EIGHTY. PRL) will execute on
December 31, 1980 , at 12 : 59 P.M., if the system is running and if it en-
counters that date . Note that since the time indicator can be set and
reset at any time , anyone could interfere and reset the time and date. All
users must, therefore , cooperate in order to rely on this operation.

Time of Day (MP/M)

To display the time of day, use the simple form of the TOD com-

mand:

OA > TODJ

Sat 12/29/80 02:20:14

To reset the time and the date, use this form of the TOD command:

OA > TOD 12/29/80 02 .22.001

Strike any key to set time

Sat 12/29 /80 02:22:00

OA >

NOTE: the TOD program displays the ` Strike any key' message; you
may then hit any key when you are ready.

Aborting a Program (MP/M)

To abort the program currently attached to the console, type + C.
(This has no effect on a detached program.)

The ABORT command will abort any program, even if it belongs to

another console.
For example:

2B> ABORT LISTING 2 1

aborts the program LISTING belonging to the console at which the

command is typed (console 2).

CP/M AND MP/M FACILITIES 101

It is also possible to type at console 4:

4A> ABORT LISTING 2,]

to abort the program LISTING. Note that the console number may be
optionally specified after the program name.

Attaching and Detaching a Program (MP/M)

A program may be detached from the console by typing 4 D. It will
continue to execute "invisibly" until it is reattached to the console.
This frees the console for the execution of another program or the entry
of text or data.

Typing a } D will detach the program from the console, provided

that the program checks the console status, i.e., reads the command. A
program may also detach itself automatically by making an XDOS
detach call.

Conversely, a program is attached to its console with the ATTACH
command. It must always be reattached to the same console from
which it was detached.

For example:

OA> ATTACH PROGJ

NOTE: typing + D when the TMP (Terminal Message Process) is exe-

cuting at a console results in the activation of the next process, which
qualifies it as being ready to run, and at the highest priority level of
those waiting for the console. Note also that TMP is in execution
whenever a command can be, or is being typed.

Console (MP/M)

Since a user number does not necessarily correspond to the console
number, the CONSOLE command is provided to examine the number
of the console being used.

For example:

2A> CONSOLE J

CONSOLE = 1

The above example shows that user number 2 is using console number 1.

102 THE CP/M HANDBOOK WITH MP/M

Directory (MP/M)

The DIR command works in the usual way and has one extension,
the "S option". For example:

OAS DIR*.*S1

will include all files that have the system attribute set.

Erase (MP/M)

The usual form of the ERAse command is provided, as well as a
new form. The ERAQ command may be used to erase a set of files

that match a specific pattern. For example:

1 B > ERAQ PROG.

B: PROG COM? 4

B: PROG INT? 4

Typing a File (MP/M)

To execute the typing of a file, the usual TYPE command is provided.
In addition, a pause mode may be used. When this option is utilized,
the command:

OA> TYPE PROG.TXT P15 J

will display fifteen lines of PROG.TXT, and then pause until a 1 is
typed.

MP/M Control Characters

MP/M provides the usual line-editing functions of CP/M for the
user typing in commands, plus some additional functions. The control
characters are listed in Chapter 6.

MPMSTAT (MP/M)

A special STAT command is provided by MP/M to display the
complete run-time status of MP/M proper . The command is:

OA > MPMSTAT 1

CP/M AND MP/M FACILITIES 103

A typical output is shown below.

****** MP/M Status Display *****

Top of memory = FFFFH
Number of consoles = 02
Debugger breakpoint restart # = 06
Stack is swapped on BDOS cal Is
Z80 complementary registers managed by dispatcher
Ready Process(es):

MPMSTAT Idle
Process (es) DQing:

[Sched] Sched
[ATTACH] ATTACH
[CLiQ] cli

Process (es) NQing:
Delayed Process(es):
Polling Process(es):

PIP
Process (es) Flag Waiting:

01 -Tick
02 - Clock

Flag(s) Set:
03

Queue(s):
MPMSTAT
MXList

Sched
[TmpO]

CliQ
MXDisk

Process (es Attached to Consoles:
[0] - MPMSTAT
[1]-PIP

Process (es) Waiting for Consoles:
[0]-TMPO DIR
[1] - TMP1

Memory Allocation:
Base = OOOOH

Base = 4000H
Base = 6000H

ATTACH MXParse

Size = 4000H Allocated to PIP
Size = 2000H * Free *
Size = 1 IOOH Allocated to DIR

[1]

[0]

104 THE CP/M HANDBOOK WITH MP/M

NOTE: a detailed interpretation of this status display goes beyond the
scope of this chapter . The display is included primarily to make the text
more complete , and can be skipped during a first reading.

The simplified meaning of the display is as follows:
Ready Process(es): This list shows all of the ready processes in order

of priority. The process with the highest priority is the one that is
running.

Process(es) DQing: Each queue is shown, along with the processes
that have executed a read operation on the queue. The processes are
listed in order of priority and are waiting for a message to be written
to the queue.

Process(es) NQing: Same as above, except that processes wait for a
buffer to write a message to the queue.

Delayed Process(es): Lists the processes delayed for a specified length
of time (clock ticks).

Polling Process(es): Lists the processes that poll an I/O device waiting
for a ready status.

Process(es) Flag Waiting: Lists the processes opposite the corres-
ponding flag number.

Flag(s) Set: List of the flags that are set.
Queue(s): Lists the queues in the system. Upper case characters are

used for those queues that may be accessed via a console command.
`MX' at the beginning of a queue name denotes mutual exclusion.

Process(es) Attached to Console: Lists the processes and corre-
sponding console numbers.

Process(es) Waiting for Consoles: Lists the processes by console
and priority. The processes have been detached and are now waiting
for their console in order to resume execution.

Memory Allocation: Displays a memory map showing the base, size,
bank (if applicable), and the resident process, along with the console
number.

Additional MP/M Commands

MP/M is equipped with three additional commands that are complex
in appearance, and are used only by assembly-language programmers:
GENMOD, GENHEX, and PRLCOM.

They are listed here to complete the text, but may be skipped during
a first reading.

CP/M AND MP/M FACILITIES 105

GENMOD (MP/M)

This special command transforms FILE 1 that contains two conca-
tenated hexadecimal files (of type HEX), offset from each other by
0100H bytes, into a FILE 2 which is page relocatable (of type PRL).

The command format is:

OA> GENMOD d: FILET. HEX d:FILE2-PRL $DDDD1

where $DDDD is an optional parameter that specifies, in hexadecimal,
the additional amount of memory required by the program.

GENHEX (MP/M)

This command transforms a COM file into a HEX file. This command
is often used before a GENMOD. An offset may also be specified. For
example:

OA> GENHEX B:FILE .COM 2001

PRLCOM (MP/M)

This command transforms a PRL file into a COM file:

OA> PRLCOMB: FILE1.PRLA: FILE2.COM1

GENSYS (MP/M)

This command is used to generate an MP/M system. It prompts the
user for all the required information and parameters, and creates the
MPM.SYS file. The MPMLDR command (described next) may be
used afterwards to load and execute the MPM.SYS file.

The dialogue is shown below. A dash denotes a user response.

A > GENSYS 1
MP/M SYSTEM GENERATION

Top page of memory

Number of consoles

106 THE CP/M HANDBOOK WITH MP/M

Breakpoint RST# =

Add system call user stacks (Y/N)? _

Z80CPU (Y/N)?

Bank switched memory (Y/N)?

Memory segment bases , (ff terminates list)

Select Resident System Processes: (Y/N)

ABORT ?

SPOOL ? _

MPMSTAT ?

SCHED ?

NOTE: the above dialogue varies slightly if Bank Switched Memory is
specified.

SUMMARY

All of the facilities offered by CP/M,. from control characters to
built-in and transient commands, were presented in this chapter . Recall
that you should know all the control characters, four of the five built-in
commands (DIR, TYPE, REN, and ERA), and four of the nine tran-
sient commands (PIP, ED, SYSGEN, and STAT). The other com-
mands will be useful to you only if you plan to write and execute
assembly level languages (ASM, LOAD, DUMP, DDT, SAVE), or if
you want the convenience of a SUBMIT file.

A complete summary of all of these commands will be presented in
reference form in Chapter 6.

i

CP/M AND MP/M FACILITIES 107

108 THE CP/M HANDBOOK WITH MP/M

HANDLING FILES WITH PIP

INTRODUCTION

The PIP command was briefly introduced in Chapter 1, where it was
used to copy a file. PIP's primary use is to copy, or more precisely,
transfer files. It can, however, do much more.

In this chapter, you will learn about all of the facilities offered by
PIP. While you will probably only use a few of these facilities, it is im-
portant to know all of the options available. You are therefore en-

couraged to read through this chapter completely, and then go back
and study in detail the sections of specific interest to you.

You may be surprised at the range of facilities PIP offers. To mention
just a few, you will learn:

- How to join files (concatenation)
- How to print formatted text (using tabs)
- How to cut off lines that are too long for the screen (D option)
- How to print a group of files with just one command (using a PRN

specification)
- How to automatically print text in formatted pages (P option)
- How to read a file up to a specified word, without using the

assembler (Q option)

UNDERSTANDING PIP

PIP is a file transfer program. The letters PIP stand for "Peripheral
Interchange Command." As its name indicates, PIP allows the transfer
of files between any two devices. Thus far, we have performed file
transfers from disk to disk only. We will now learn to use additional op-
tions available with PIP. In particular, PIP can also process files as it
transfers them.

We will first present a complete description of PIP's most important
function: copying files. Then, we will study PIP's facilities for transfer-
ring files between the various devices connected to the computer
system.

109

1 COPYING FILES

Copying A Single File

PIP may be executed in two ways:
1. As a single line command
2. As a "program"

Here is an example that uses PIP as a single line command:

A> PIP B : COPY1.BAK = FILE1.TXTJ

A>

It is assumed that FILEI.TXT is on the current drive , A. This command
directs PIP to make a copy of FILEI .TXT, name the new copy
COPYI. BAK and put COPYI .BAK on drive B. Then , CP/M returns
with the system prompt (A>). This is a quick way to copy a single file.

PIP can also be executed as a "program," and used to perform a se-
quence of copy operations:

A> PIP,

*B:COPY2.BAK = FILE2.TXT

*A: = B:SAMPLE.BAS)

*A: = B:PROG.FORJ
*I

A>

Once the PIP program executes , it displays the PIP prompt '*'. PIP
commands may then be executed . The first line in the example makes a
copy of FILE2 .TXT, which is on drive A, calls the copy COPY2.BAK,
and then puts COPY2. BAK on drive B. The next line makes a copy of
SAMPLE . BAS, which is on drive B, uses the original name
(SAMPLE .BAS) for the copy, and puts the copy on drive A. The next
expression also copies a file from drive B to drive A. A simple RETURN
(carriage return) terminates PIP, causing a return to CP/M: the usual
CP/M prompt `A>' appears on the screen again.

We will now present the rules for performing such transfers . To make
a copy of a file from one diskette to another , use this form of a PIP ex-
pression:

110 THE CP/M HANDBOOK WITH MP/M

d:copy = d:original

where `d ' is a drive letter, `copy ' is the new name for the copy file, and
`original ' is the name of the original file. The two d's above may refer to
the same drive, or to two different ones . The `d' on the right may be
omitted , since PIP will assume that the file is in the current drive. The
`d' on the left may also be omitted, as long as the `copy' name is sup-
plied . If you want the copy file to have the same name as the original
file, use this abbreviated form:

d' = d:original

where d' is a different drive letter than d:. The copy name may be omit-
ted - PIP will just assume that the name of the file in the new drive is
the same as the original. However, this will only work if the copy file's
drive is a different drive from the original file's drive, because you can-
not have two files with the same name on the same diskette . For exam-
ple:

*B: = A:TEST.INTJ

will copy TEST.INT from A to B.
Let us study some examples . Assume that we are in drive A. Assume

that FILE I.NAD is in drive Aand PROGRAM.TXT is in drive B. Are
the following PIP commands legal?

A> PIP,

*A: = B:PROGRAM.TXT)

*B: = FILEI.NADI

*A:FILEREV.NAD =A:FILE1.NAD J

*A:FILEI.TXT= FILEI.NAD j

*B:FILEI.NAD = FILE1.NAD)

All of the above are legal . In (2), notice that the command is
equivalent to:

B: = A:FILEI.NAD

Remember that the current drive may be omitted . It is then assumed by
PIP to be the current drive , i.e., A. The A could have been omitted in

1

HANDUNG FILES WITH PIP 111

(3). FILEI .TXT in (4) is not the same as FILEI.NAD. This is legal. (5)

could have been abbreviated to look like (2).

Copying Multiple Files

Multiple PIP commands are used to copy several different files. For

example, let us copy the three files:

FILE1.NAD

LETTER.TXT

PROGRAM .1 NT

from B to A:

A> PIP,

*A: = B: FILE1. NADJ

*A: = B:LETTER.TXTJ

*A: = B:PROGRAM.INTJ

*I

A>

In special cases, however, this procedure can be simplified with the use
of PIP ' s matching symbols . To facilitate copying multiple files, PIP
permits the use of two special symbols: `?' and `*'. The `?' may be used

in a file name , and will match any character that might appear in its

place.
For example:

FILE?.NAD
will match:

FILE!.NAD

FILE2.NAD

FILE3.NAD

but not : FILE44.NAD (one character too many)

112 THE CP/M HANDBOOK WITH MP/M

We will now copy the three files:

FILEI.NAD

FILE2.NAD

FILE3. NAD

from drive B to drive A. Here is the command:

A> PIP A: = B:FILE?.NADJ

which will accomplish the three transfers in just one command by using
the special matching character . B's directory will be examined by PIP
until all possibilities of making a match are exhausted. Note that if there
were another file on B called

FILES.NAD

it would also be transferred.
The second matching character, `*', is even more powerful . It will

match anything in its field, regardless of length. For example , assume
B contains:

FILEI.NAD

FILE 12. NAD

LETTER.TXT

CBASIC.INT

FILEI.BAK

Then, the characters *. NAD will match:

FILE 1. NAD

FILE 12. NAD

i

HANDLING FILES WITH PIP 113

And FILEI.* will match:

FILE!.NAD

FILE 1. BAK

It is also possible to write which will simply match all of the files
on the diskette in drive B. This will be used in the next section to copy
all files.

For example, if we want to copy all COM type programs from drive
A to drive B, we can simply type:

A > PIP B: = *.COMI

and all commands will be successively copied to drive B.
We have now learned how to copy a single file and a group of files.

Next, we will learn how to copy an entire diskette.

Copying All Files

Note that this section is titled "Copying All Files," and not "Copy-
ing An Entire Diskette." This is because CP/M is not stored as a file.
In order to copy CP/M, a special command, SYSGEN, must be used
(described in Chapter 2). If a diskette contains only files, then we will
be copying all files. If the diskette also contains CP/M, however, we
will only be copying the files, not CP/M.

You cannot know whether CP/M is on a diskette by simply examin-
ing the directory with the DIR command; CP/M is not a file, and is
not listed as a file. If you want to check whether or not CP/M is on a
diskette, you will have to try executing CP/M from it by doing a
CNTRL-C, for example.

Let us now use PIP's matching facility to copy all files. A filename

match may be used as a filename in the original filename arguments

only. For example, if you want to copy all of the files from diskette
drive A to diskette drive B, you would type this command:

A > PIP B: =A:*.*J

Use this form of PIP to make copies of diskettes:

PIP d':=d:*.*

114 THE CP/M HANDBOOK WITH MP/M

where d' is the letter of the drive holding the new diskette,and d is the
letter of the drive holding the old diskette. The filename match
will match all filenames. d' must be different from d.

In practice, when copying all files, it is recommended that you type:

A > PIP B : =A:*.* [V] I

`V' is a PIP option that specifies "verify"; it checks to see if the copy
is identical to the original . This is the best command to use for safety.
However, the copy process takes much longer with the [V] option, so
that many users do not use it unless a file is very valuable.
NOTE : remember that the PIP command:

B: = A:*.*

will copy all files on A, but only the files. If A contains a "system,"
i.e., CP/M, CP/M will not be copied, as it is not a file. Recall that
CP/M itself must be copied with the SYSGEN command.

Copying A Diskette

On many computers, a special utility program is available to copy en-
tire diskettes at high speed. If this option is used, then the second disk
will be a complete copy of the first, including CP/M, if CP/M was on
the first one. This is usually the quickest way of copying a complete
diskette.

On the other hand, when PIP copies a file, it copies it on adjacent
"blocks" or "sectors" on the diskette. As a result, the copied file will
be accessed much more quickly by programs such as anyeditor (or word
processor) or an interpreter (BASIC).

In summary, using PIP to copy a diskette will result in a "cleaner"
file. Using a disk-copying program, however, will save time on the copy
operation.

CP/M Version 2.2 and MP/M

The expression `*.*' for a filename match might not be sufficient for
your installation if you have separate user areas (user areas are dis-
cussed in Chapter 2). If you make use of these areas, then your system
should have a special program that will duplicate diskettes. If you get an
"invalid format" error, hit any key except the RETURN key to bring
back the PIP prompt . If the PIP operation does not occur , try it again.

A

HANDLING FILES WITH PIP 115

If you hit RETURN, PIP terminates, and the operating system returns
with the system prompt.

Copying Onto A Fresh Diskette

The Two Methods

If you have three disk drives or more, simply insert a new diskette in
drive C, and "PIP" your file from B to C, i.e., from the second to the
third drive. If you have only two drives, however, the copying process is
more complicated. We will assume that the system disk is in drive A,
and that the file to be copied is in drive B. We want to copy it onto a new
diskette. Two methods may be used: transferring through A, and
diskette swapping.

Transferring Through A

This method is safe, but slow, and works only if the diskette in drive
A has enough space left on it. (We will later see how to check the space
available with the STAT or DIR commands .) The method used is quite
simple:

1. The file is transferred from B to A
2. A new diskette is placed in B
3. The file is transferred from A to B, onto the new diskette.
Remember that f C must be executed before step 3, so that CP/M is

able to write on a new diskette . For example:

A> A:=B:FILE.INTJ

(place a new diskette in B)

tC

A> B:=A:FILE.INTJ

Then, verify that your file is on the diskette in drive B by checking B's
directory (using `DIR'), and erase the extra copy from A ('ERA').

Disk Swapping

This method directly transfers the file onto a fresh diskette. In order
for the transfer to occur, three conditions must be met simultaneously:

116 THE CP/M HANDBOOK WITH MP/M

1. PIP must be executing
2. The source file must be in a drive
3. The destination diskette must be in a drive.

PIP is loaded from the diskette into the computer's memory. Then, the
system diskette is removed, and PIP is executed in memory. In other
words, once the PIP command has been invoked, the PIP program is
loaded into the computer's memory, and the System Diskette may be
replaced by another diskette for the transfer.

Assuming that the System Diskette with PIP is in drive A, the process
is as follows:

1. Insert a fresh diskette in B
2. Hit CTRL-C to perform a "warm boot." This allows CP/M to

recognize a new diskette in B, and to write on it
3. Invoke PIP by typing: `PIP(CR)':

A> PIP,

*f

PIP is now in the memory, and ready to execute.
At this point you can remove the System Diskette for a moment, and

insert the original diskette (the one that you are copying) into drive A. It
may sound surprising to suggest removing the System Diskette on
which PIP resides. Remember, however, that whenever a COM type
program is executed , it is loaded from the disk into the computer's
memory.

PIP has been invoked by typing:

A> PIP,

A copy of PIP is now in the computer 's memory . We no longer need the
diskette , and we can remove it until we want to exit from PIP.
NOTE: do not terminate PIP until you put the System Diskette back in.

Do not type a return after a prompt, once PIP has been activated:

* 1 (DON'T!)

as this will terminate PIP. Also, don't use CTRL-C until you have put
the System Diskette back in. Refer to "Practical Hints" in Chapter 7 to
learn an effective safeguard against accidental exit from PIP.

Now, insert the diskette to be copied into drive A. At the PIP prompt

HANDLING FILES WITH PIP 117

`*', you can type a PIP expression. Bear in mind that the original
diskette is in drive A, and that the fresh diskette is in drive B. If you are
copying the entire original diskette, you should type this expression:

*B: =A:** j

Or, if you prefer:

B:=A:.* [V] j

with the verification option.
The `*.*' is a filename match for all files (under CP/M version 2.2

and MP/M, the `*. * [V]' matches all files in your user area only). This
PIP expression copies all files from drive A (the original diskette) to
drive B using the same names for the copies of the files. After executing,
you will have a copy of every file on the fresh diskette, and the files will
have the same names as before.

Now you are ready to bring back the system. Before terminating PIP,
remove the original diskette from drive A, and put the System Diskette
back into drive A. You can now terminate PIP by simply hitting the
RETURN key:

*1

A>

If the system does not return, check drive A. If the drive A light is on,
you can insert the System Diskette, and the system will return. If the
light is off, you must insert the System Diskette and restart the system,
as described in Chapter 1.

Installations that have only two drives must use the method just
described:

1. Put a fresh diskette into drive B
2. Execute PIP
3. Take out the System Diskette
4. Put the original diskette into drive A
5. Execute PIP expressions for copy operations
6. When finished, take out the original diskette
7. Put the System Diskette back in
8. Then, terminate PIP.

118 THE CP/M HANDBOOK WITH MP/M

Remember to put the fresh diskette in drive B, and the original in
drive A. If there was another diskette in B before, execute a CTRL-C
before doing anything, or CP/M will refuse to write on a diskette that it
does not "know." CTRL-C will force CP/M to log in the fresh
diskette. Note that this does not work the other way around. If, instead
of the System Diskette, we had placed the new diskette in A, CP/M
would refuse to write on it, as we did not log it in.

Once the system diskette has been removed, you can no longer ex-
ecute a CTRL-C, so there is no way to log in the new diskette in A.
However, here is a practical hint: make a copy of CP/M and PIP on
your new diskette; then you can place it in either drive and make conve-
nient copies from it.

Cromemco CDOS

CDOS does not require a CTRL-C to write on a new diskette;
therefore, the process of copying may be simplified. With the system in
drive A, and the diskette to be copied in drive B, execute 'PIP I' as
before, then:

1. Remove the system diskette
2. Insert the new diskette in A
3. Perform the transfer
4. Remove the new diskette
5. Put the System Diskette back in A
6. Hit "return" to terminate PIP.

The Recommended Procedure

As long as you are inexperienced with CP/M, you should transfer
your file by using the first method (copying through A), as it is safer.
Better still, copy CP/M and PIP on all of your diskettes so that swap-
ping is no longer required. While you may want to try the second
method of transferring a file, remember that you may damage your
original diskette if you exit from PIP too soon by hitting return without
having removed the original diskette housing the files.

Aborting A Copy Operation

Pressing any character on the keyboard during a PIP transfer will
normally abort it. PIP confirms this by displaying the message
`ABORTED.'

HANDLING FILES WITH PIP 119

COPYING TO DEVICES

Introduction

Printing a file is one example of a transfer operation: the file is copied
from the disk onto the printer. PIP provides general-purpose transfer
capabilities and allows a file to be transferred not just from disk to disk,
but between various devices.

These general capabilities will be described next. We will learn how to
transfer between any two (reasonable) devices that may be attached to
the computer. We will introduce new features of PIP such as concatena-
tion, which may be used on all file transfers, including disk to disk.
Even though you may not plan to use a card-reader, it is important to
read this section completely, as it also applies to printing and file copy-
ing.

We will first consider the most frequently used operation, printing.

Printing A File

A file may be printed by PIP, or by other programs. If you are using a
word processor or other special program that has a "printing facility"
(the ability to send a file to the printer) included, you should use that
program to print files created and accessed by the program. For exam-
ple, if you created and added data to a "name and address" file by us-
ing a "name and address" software package, chances are you also have
a way of printing the file by using a special program provided as part of
the same "name and address" software package.

The major advantage of a specialized printing program is that it
prints your file in a specific format. A printing program, for example,
may provide automatic formatting, tabulations, line spacing, pagina-
tion, and other printing options.

The CP/M command TYPE may also be used to type an alphanu-
meric file (refer to Chapter 1). For example:

A> iP

A> TYPE FILE.TXT 1

The CTRL -A turns the printer "on ," if it was "off" before. This com-
mand is easy to use, and provides "raw" typing , in other words , the file
appears on the printer exactly as it is on the disk without any reformat-
ting.

120 THE CP/M HANDBOOK WITH MP/M

Only one formatting facility is provided by TYPE; it will expand any
tab characters (CTRL-I) contained in the file, and assumes a tab posi-
tion at every eighth column. The TYPE command is used for fast typ-
ing, looking at the beginning of a file, or, most often, displaying a file
quickly on the screen rather than on the printer. The CRT terminal can
display text at a speed of 9600 baud vs. 300 to 600 baud for a printer
(approximately). TYPEing on the screen will therefore display text
much faster than if it was listed on the printer.

Files may also be printed with PIP as part of its general file transfer
capabilities. This process will now be described.

Transferring Files

A file can be sent to any device capable of receiving it. For example, a
file can be sent to a disk unit, a printer, a video monitor, a paper tape
punch, and a cassette recorder. It may not be sent to a card reader or a
keyboard.

A printer without a keyboard can only receive files. A printer with a
keyboard becomes a terminal, and the keyboard may generate a file.

Figure 3.1 shows how a user can "input" (read) from a device and

"output" (write) to a device. The computer executes all programs and
transfers all information.

To list a file on the printer, the computer first reads the file from the
disk (input), and then transfers it to the printer (output). Most pro-
grams read files from the disk in blocks (one sector at a time), so that
they can transfer a large file while using only a small amount of internal
memory. This is shown in Figure 3.2.

Characters or files can also be input from the keyboard, or output to
the display. They can be output to the disk as a disk-to-disk transfer as
well. Specific file transfer programs must be available to provide these
facilities. Often, specialized programs accomplish one of these func-
tions within applications packages. However, the PIP program (a com-
mand) may be used as a general facility to send a copy of a file to a
device, or receive information from a device to put in a file. Several PIP
expressions, combined with special keywords used to represent devices,
can perform powerful and complex copy operations. They will be
described here.

In order to learn the valid PIP expressions, devices must be properly
designated. The PIP conventions for specifying devices will be exam-
ined first.

HANDLING FILES WITH PIP 121

Figure 3 . 1: The Elements of a System

122 THE CP/M HANDBOOK WITH MP/M

DISK DRIVES CRT DISPLAY

Figure 3.3: A File is Transferred to the Console : CON: = SAMPLE.TXT

Figure 3.4: LST: = 8: SIMPLE.BAK

Figure 3 .5: PROG . BAS = RDR:

HANDLING FILES WITH PIP 125

The opposite operation, sending a copy of the file to the paper tape
punch, card punch, or cassette recorder, is the last PIP expression
that sends a copy of PROG.BAS to the PUN: (punch) device (see
Figure 3.6).

Figure 3 .6: PUN: = PROG.BAS

Physical Device Names

For convenience, physical device names may also be used in PIP ex-
pressions. The following are valid physical device names:

TTY: for a console or terminal, a reader, a punch or a
list device (teletype)

CRT: for a console or terminal, or list device (Cathode
Ray Tube)

PTR: for a paper tape or card reader device
PTP: for a paper tape or card punch device
LPT: for a list device (line printer)
UCI: for a user-defined console or terminal
URI: for a user-defined reader
UR2: for a second user-defined reader
UPI: for a user-defined output (punch) device
UP2: for a second user-defined output (punch) device
ULI: for a user-defined listing device

NOTE: BAT: is not included , since it only reassigns the values for RDT:

and LST:

126 THE CP/M HANDBOOK WITH MP/M

SPECIAL COPY OPERATIONS

Introduction
We have now learned how to perform all of the simple copy opera-

tions. In this next section, we will learn how to perform more complex
transfer operations on text files and "hex files." PIP is not just a simple
"copy" program, but a general transfer program equipped with a
number of processing options. These processing options will now be
described in detail.

Special Device Names

Special device names are provided by PIP that result in the special
processing of a file. The following additional device names may be used
when performing PIP transfers:

NUL: send 40 "nulls" (ASCII code 0) to the device, usually a punch
device for output. Example (where PROG.HEX is sent to the
punch):

*PUN: = PROG. HEX, N U LL: I

EOF: send an end-of-file (ASCII Q) to the device (sent automatically
by PIP during ASCII text file transfers, and only needed for
special cases). Example:

*PUN: = NUL:,X.ASM,EOF:,NULL:J

This example sends 40 nulls to the punch device, followed by a
copy of the file X.ASM, followed by the end-of-file character
(4 Z) and 40 more nulls.

PRN: same as LST: (send to the printer), except that tabs are expand-
ed every eighth character, lines are numbered (as in the ED pro-
gram), and page ejects (form feeds) are inserted every 60 lines (to
advance the printer paper to the next page), with an initial page
eject. Example:

*PRN: = SAMPLE.TXT J

HANDLING FILES WITH PIP 127

INP: special input device code which can be "patched" into the PIP
program itself (you must write the patch in assembly language
and add it to PIP). PIP receives the input character by calling a
location in memory (103H) and storing the data starting at loca-
tion 109H (parity bit must be zero - use the Z parameter).

OUT special output device code that can be "patched" into the PIP
program itself, like INP: described above. PIP calls location
106H and sends the data in register C (each character).
NOTE to assembly language programmers: locations 109H
through 1FFH of PIP memory image are not used and can be
replaced with code for special purpose device drivers (use DDT-

the CP/M Debugger supplied by Digital Research with CP/M
or MP/M). Examples:

*MODEL.CLK = INPJ

(input from special device is stored in file MODEL.CLK)

*OUT: = MODEL.CLK d

(copy of MODEL. CLK is sent to the special device)

Text (ASCII) Files Sent to Devices

Most data files and all of the text files created by editor programs or
word processing programs are text files in ASCII format. Other files,
like command (.COM) files, BASIC intermediate (.INT) program files,
and machine language (.HEX) files are actually programs written in a
high level language (like BASIC) or in an assembly language where
binary codes represent actual numbers or instructions, not text.

It is important that you know the differences between files if you per-
form special copy operations, like translating upper case characters to
lower case, or deleting characters while copying, or copying portions of
a file. You can only do these things with ASCII text files, because PIP
expects a certain character (the character produced by hitting CTRL
and Z simultaneously, i.e., + Z) to be at the end of the file, so that it can
easily search for characters. You can also concatenate (join) several
ASCII text files by using PIP (described later in this chapter).

Certain devices can only receive or send ASCII text files. You can on-
ly send text files to printers and console displays, for example, but other
devices (RDR: and PUN:) can send or receive any kind of file. The in-

128 THE CP/M HANDBOOK WITH MP/M

formation in a file may be coded in a number of ways. For example, a
text file is normally coded in ASCII format, where an 8-bit code (a
"byte") is used to represent each character, including the special con-
trol characters. This code is shown in Figure 3.7.

BIT NUMBERS
0 0 0 0 1 I 1 1

0

0

0

1

1

0

1

1

0

0

0

1 0

1

1

b, b. b, b.

+

b,

+

b,

+

b,

+

HEX 1

HEXO
0 1 2 3 4 5 6 7

0 0 0 0 0 NUL DLE SP 0 @ P p

0 0 0 1 SOH DCI 1 1 A Q a q

0 0 0 2 STX DC2 " 2 B R b r

0 0 3 ETX DC3 # 3 C S c

0 0 0 4 EOT DC4 $ 4 D T d

0 5 ENQ NAK % 5 E U e

0 0 6 ACK SYN 6 F V f

0 7 BEL ETB 7 G W g

0 0 0 8 BS CAN 8 H X h

0 0 9 HT EM 9 1 Y y

0 0 10 LF SUB J Z z

0 11 VT ESC + K [k {

1 0 0 12 FF FS < L \ I

1 1 0 1 13 CR GS - = M] m }

1 1 1 0 14 SO RS > N A n -

1 1 1 15 SI US / ? O a DEL

NUL --- Null VT Vertical Tabular on CAN -- Cancel

SOH - Start of Heading FF Form Feed EM End of Medium

STX - Start of Text CR Carriage Return SUB - Substitute

ETX -- End of Text SO Shift Out ESC - Escape

EOT - End of Transmission SI Shift In FS - File Separator

ENQ - Enquiry DLE Data Link Escape GS Group Separator

ACK - Acknowledge DC - Device Control RS Record Separator

BEL Bell NAK - Negative Acknowledge US Unit Separator

BS Backspace SYN - Synchronous Idle SP - Space (Blank)

HT Horizontal Tabulation ETB -End of Transmission Block DEL Delete

LF - Line Feed

Figure 3 .7: ASCII Conversion Table

HANDLING FILES WITH PIP 129

However, programs that have been processed by a compiler are
usually represented in a more compact code, called hexadecimal, which
uses only 4 bits to represent 16 symbols. See Figure 3.8.

When transferring a file to a printer or a display, it is essential to
specify whether it is hexadecimal (two digits per byte) or ASCII (one
character per byte). PIP transfers a file until it reaches the end-of-file
character in ASCII text files (} Z), or the actual end of file in other files
(except where PIP is only transferring portions of a file).

DECIMAL BINARY HEXADECIMAL

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F

Figure 3 .8: Hexadecimal Conversion Table

Concatenating Text Files

Concatenation is an important command used to group several text
files into one. Note, however, that the space available on the disk must
be sufficient to accommodate the final file.

The simplest example is to concatenate two files:

A> PIP,

* BIG.TXT = PART1.TXT, PART2.TXT j

130 THE CP/M HANDBOOK WITH MP/M

You can also join several text files at once:

A> PIP,

*FINAL.ASM = SUB1.ASM,SUB2.ASM,TEMP.ASM 1

*B:NEW.ZOT = A:OLD.ZAP,B:OLD.ZOT,A:NEW.ZAPJ
*I

A>

In this example, copies of the files SUBI.ASM,SUB2.ASM and
TEMP.ASM (all on the current drive, drive A) are joined in that order
(i.e., SUBI.ASM is first, SUB2.ASM is second, etc.) into one copy
called FINAL.ASM. The second PIP expression joins a copy of
OLD.ZAP on drive A with OLD.ZOT on drive B and with NEW.ZAP
on drive A , and the resulting copy is put on drive B and called
NEW.ZOT.

PIP always assumes that these are text files , each ending with the end-
of-file character (ASCII 4Z). If they are text files, PIP will have no
trouble joining them (removing the 4Z characters and putting one on
the end of the new copy to denote end-of-file). If they are not text files,
however, you should read the next section, "Concatenating Non-Text
Files."

Another way to concatenate is to specify the "leading" file as the
copy. For example:

A> PIP FIRST.TXT = FIRST.TXT,SECOND.TXT,THIRD.TXT J

A>

This command will not change the initial contents of FIRST.TXT or
the other files, but will append (add to the end) to FIRST.TXT the files
SECOND.TXT and THIRD.TXT. The final file FIRST.TXT will con-
tain at its beginning the old contents of the initial FIRST.TXT.

Concatenation may be used to list or examine several files at once,
with a single command . For example:

A > PIP LPT: = FIRST.TXT,SECOND.TXT

will print the two files in sequence on the printer.
When using Cromemco's XFER instead of PIP, the control

characters are different from PIP and should be learned specifically. In

HANDLING FILES WITH PIP 131

particular, XFER requires a control character to concatenate files (or
the CRTL-Z will be left in at the end of each file).
A practical hint : when concatenating files , make sure that there is
enough room on your diskette for the resulting file.

Concatenating Non-Text Files

When you are concatenating (joining) non-text files, each file does
not have an end-of-file character, therefore PIP will not copy after it
reaches an actual end of file (i.e., if there is no end-of-file character, just
an end of the file). To force PIP to copy the next file, and join it to the
previous file, you must use a "transfer parameter" shown here as "X"
(discussed in "Parameters in Copy Operations" in this chapter).
Parameters are enclosed in brackets ([]), and they must appear in the
PIP expression after the file or device they apply to. For example:

A> PIP FINAL. HEX = TEMP1 [X], TEMP2 [X], TEMP3I

This PIP command concatenates copies of the files TEMPI,
TEMP2, and TEMP3, and calls the resulting copy FINAL.HEX. The
X parameters force PIP to overlook the actual ends of files TEMP 1 and
TEMP2, and perform the concatenation (used with non-text files only).

Copying Hex Files

Files that are hexadecimal are generally created by an assembler. An
assembler translates an assembly language program into machine code
(sequences of binary numbers corresponding to instructions), which is
stored in a hexadecimal file.

The CP/M assembler creates a HEX file, i.e., a file with a HEX ex-
tension. The HEX extension has a special meaning to PIP: PIP assumes
that the file is in the Intel "hex format," and PIP automatically checks
for proper format, legal hexadecimal values, and checksums. The HEX
extension should, therefore, be used with care.

If you want to make a copy of a HEX-type file, you can use a PIP ex-
pression with the H or I parameter (for hexadecimal data transfer).
When you use the H parameter, PIP checks all of the data to ensure
proper Intel hexadecimal format. If there is an error in the data (i.e., it
does not have the proper hex format) PIP prompts your terminal to
seek corrective action. The H parameter also removes non-essential
characters between hexadecimal records during the copy operation.

132 THE CP/M HANDBOOK WITH MP/M

The I parameter automatically sets the H parameter (it does what H
does, and more). If you use the I parameter, PIP ignores the `:00'
records in the original hexadecimal-formatted file (Intel hex), and
checks for improper hexadecimal format.

If you are copying from a device to a file with an explicit `HEX' ex-
tension, PIP checks the data for improper Intel hexadecimal format

and checksum records. In other words, if you are copying from a paper
tape reader to a new file SAMPLE. HEX, you don't need to use the H
parameter to check for proper hexadecimal format (you do, however,
need the I parameter to ignore `:00' records).

If PIP senses an invalid format or a checksum error, it reports the er-
ror to your terminal and waits for corrective action. If you are copying
from paper tape, you can usually pull the tape back about 20 inches and
rerun the tape. When the tape is ready, type a single RETURN and PIP
will attempt to copy from the tape.

NOTE: if the device is the RDR:, you can enter the end-of-file (+ Z)
character from your terminal keyboard while the PIP operation is
copying. PIP reads from the device while monitoring your keyboard,
and waits for you to type a 4 Z to terminate the copy operation.

Here are examples of PIP expressions using this extension:

*X.HEX=CON:, Y. HEX [I], PTR: d

Hex
format
records
typed at
terminal

} Z

s

In this expression, PIP copies into X.HEX first from the CON:
device (your terminal) until you type a Z. Then, PIP copies from
Y.HEX and ignores `.00' records. Finally, PIP copies from the paper
tape reader PTR: until it encounters an end-of-file (4 Z).

*PROG.X= KLUDGE.HEX [H] I
*

HANDLING FILES WITH PIP 133

This expression copies the hexadecimal format file KLUDGE. HEX in-
to PROG.X and checks for invalid hexadecimal format during the
transfer.

PARAMETERS IN COPY OPERATIONS

The Parameters

We will now describe some of the processing options available during
transfers. Even though you will generally only use a few, it is important
to know that they exist. Parameters are special letters enclosed in
brackets that follow a filename in a PIP expression and affect the copy
of that file. You can specify more than one parameter in a PIP expres-
sion. Some parameters require another letter or letters or digits. These
are all advanced copy operations, and knowledge of them is not re-
quired for the casual PIP user.

B Block mode transfer. PIP puts data in a buffer until it reads an
ASCII `X-off' character (+ S) from the device. PIP then clears
the disk buffer and returns for more data. The size of the buffer
depends on the size of your system (see the documentation pro-
vided with your system). Use this parameter to transfer data
from a continuously reading device like a cassette player or
reader. Example:

*SERVE.TXT= RDR: [B],j

Dn PIP deletes characters that extend past column `n' (vertical col-
umns on your terminal) while copying text files. Use this to trun-
cate long lines if you are sending a file to a "narrow device,"
such as a low-cost printer or a 40-column monitor. Example:

*PRN: = LONG .TXT [D40]J

This command may also be used to "cut off" comments from a
program, if they appear in a specific position.

E Echo (redisplay) all copy operations on the terminal screen as
they are being performed. Example:

*COPY.TXT = SOU RCE.TXT,S2.TXT,S3.TXT,S4.TXT [E])

This is useful in the case of a sequence of transfers.

134 THE CP/M HANDBOOK WITH MP/M

F PIP filters form feeds from the file (i.e., removes them). You
can also use the P parameter to insert new form feeds. This
allows you to "clean up" a file after modifying it for neat print-
ing.

H Hexadecimal data transfer: PIP checks all data for proper Intel
hexadecimal format. This requires a HEX file.

I Ignore `:00' records in the transfer of Intel hex format files
(automatically sets the H parameter). This requires a. HEX file.

L Translate all UPPER CASE characters to lower case.

N Add line numbers to each line copied into the new file (starting at
line 1). Each line number is followed by a colon. Leading zeros
(e.g., 003) are deleted, unless you specify the `N2' parameter.
`N2' leaves the leading zeros and inserts a tab space after the
numbers. You can expand tab spaces by using the T parameter.
This is useful for referencing a listing.

O Object file transfer (for non-ASCII files): PIP ignores the
physical end of the file during concatenation (see "Con-
catenating Files").

Pn PIP includes page ejects at every `nth' line (with an initial page
eject). If n is 1 (or if you don't specify `n'), page ejects occur
every 60 lines. (This is called a default specification.) If you also
use the F parameter, PIP removes the form feeds before inser-
ting page ejects. This is a convenient method for printing onto a
set page format.

Q PIP quits copying from the device or file when it finds the
string `string' of characters you specify (a `string' is a group of charac-
f Z ters; e.g., STRING105076). You end your `string' with a #Z

(CTRL and Z simultaneously). See "Copying Portions of Files"
in this chapter. This is a convenient way to list a portion of a file.

S PIP starts copying from the device or file when it finds the
string `string' of characters you specify. End your string with a + Z.
} Z See "Copying Portions of Files" in this chapter. This is a conve-

nient way to list a portion of a file, starting at a given location.

HANDLING FILES WITH PIP 135

Tn Expand the tab space to every `nth' column during the transfer
of text files. You create a tab space in a text file using 4 I; this
parameter expands the tab space from its usual fixed column
amount (vertical columns on your terminal screen).

U Translate all lower-case characters to UPPER-CASE during the
copying of text files.

V PIP verifies that data has been copied correctly by re-reading the
new copy file afterwards (copy file cannot be a device), and
displaying a message if the copy was successful. This parameter
should be used whenever an important backup copy is made.

Z Turn the parity bit to zero on inputs of ASCII characters. Use
this parameter especially if you are inputting from the INP:
patch device.

Here are examples of PIP expressions with parameters:

*LST: = SAM PLE.TXT [NT8P60] I

This expression sends the file SAMPLE.TXT to the list device (LST:),
with line numbers ('N') tabs expanded to every eighth character column
('T8') and page ejects at every 60 lines ('P60'). The PRN: device
assumes these parameters ; if the listing device was assigned to PRN:,
the above example could be rewritten:

*PRN: =SAMPLE.TXTJ

You can override the PRN : "assumptions " (default parameters) by
providing your own parameters:

*PRN: = SAM PLE .TXT [P59] j

This expression sends SAMPLE.TXT to the PRN: device with the usual
default parameters (i.e., NT8), except that the usual P parameter is
changed to 59 lines.

Here is another example:

*LPT: = PROG.ASM [NTBU] f

136 THE CP/M HANDBOOK WITH MP/M

This expression sends PROG.ASM to the listing device with line
numbers ('N'), expanded tabs to every eighth column ('T8'), and with
lower case characters translated to upper case ('U').

Copying Portions of Files

Inevitably, you will some day interrupt a long listing on your printer
either by accident (hitting a character on the keyboard), or because of a
printer problem (no more paper, or other mechanical problems). You

will want to restart your listing where it was interrupted, rather than list
the entire file again. This is the simplest example of a partial transfer.
PIP provides the convenient option of listing and transferring portions
of files.

You can instruct PIP to only copy portions of text files by specifying
starting and stopping strings of characters. (Recall that a "string" is a
sequence of characters.) Use the S parameter to specify a starting string
(i.e., where PIP should start copying), and the Q parameter to specify a
stopping string (i.e., where PIP should stop copying). PIP will
automatically search for each string of characters.

You must end both strings with the 4 Z character (hitting CTRL and
Z simultaneously). Here is an example that copies the file
SAMPLE.TXT from its beginning to the string `Extra':

A> PIP j

*NEWSAMPLE.TXT=SAM PLE.TXT[QExtrafZ] j
*1

A>

This PIP operation stops when it encounters the string `Extra.' Note
that `Extra' is in upper and lower case, and that we executed PIP as a
program, not as a one line command. If we had typed:

A> PIP NEWSAMPLE.TXT=SAM PLE.TXT[QExtra+Z],j

PIP would translate the string ` Extra ' to `EXTRA' automatically. IF
YOU EXECUTE PIP AS A ONE LINE COMMAND, IT WILL
ALWAYS TRANSLATE YOUR STRING TO UPPER CASE. If
you execute PIP as a program and type a PIP expression , it will leave
your string the way you typed it.

HANDLING FILES WITH PIP 137

Here is another example of the use of the S and Q parameters:

A>PIPJ

*EXTRA . TXT = SAMPLE. TXT [SExtra4Z QAnother extra4Z] J

*1

A>

This PIP operation starts copying SAMPLE . TXT when it finds the
string `Extra ', and stops copying when it finds the string ` Another ex-
tra'. The file EXTRA. TXT contains the portion of the file between the
strings ` Extra ' and `Another extra', including ` extra' but not `Another
extra'.

Note that we executed PIP as a program in order to preserve the
upper-lower case strings. IF THE STRINGS WERE ACTUALLY
ALL UPPER CASE IN THE FILE, then the upper -lower case strings
would not be found by PIP.

ENHANCEMENTS IN CP/M VERSION 2.2

Enhancements

If you have CP/M version 2.2, there are certain restrictions preventing
you from performing copy operations that are "normal" in CP/M
version 1.4. For example, if you are making use of version 2.2 user
areas, you might have noticed already that you cannot create a copy in
another user area, nor can you make a copy of a file that is in another
user area.

The enhancements to PIP allow you to "get around" the other
enhancements to the rest of CP/M version 2.2 and MP/M. The section
on CP/M version 2.2 and MP/M explains user areas and file attributes,
but here is a quick summary:

User areas: Any disk (diskette) can contain files separated into
distinct user areas (i.e., user 0, user 1, user 2, etc.) Of course, your disk
(diskette) could have only one user area (user 0) to be compatible with
earlier versions of CP/M, but version 2.2 allows you to separate files in-
to user areas, and to jump from one user area to another using the
USER command, in order toprepare you for MP/M (so that your disks
and diskettes will be compatible with future releases of MP/M). MP/M
is a multi-user system, and there is a need to separate user's files. You do

138 THE CP/M HANDBOOK WITH MP/M

not have to use this feature, and it is not recommended unless your
system will have many simultaneous users.

File attributes: In CP/M version 2.2 and MP/M, you can choose to
put a special indicator on a file, called a file attribute. File attributes
regulate the use of the file, and include: read-only, read-write, system,
and directory. These attributes are set with the STAT command
(described in the section for CP/M version 2.2 and MP/M).

If a file is read-only (abbreviated `R/O'), it cannot be changed (up-

dated) or deleted; i.e., the system cannot write to the file (or over-write
the file). You must first change the R/O file attribute to R/W (read-
write) by using STAT.

If a file is a "system" file (abbreviated '$SYS'), it is not displayed by

the DIR command, and you cannot read from the file (which also
means that you cannot copy it). If you also set the R/O attribute (i.e.,
$SYS and R/O), it is well-protected. You must change the $SYS file at-
tribute by using STAT to the attribute `$DIR' (for "directory"), so that
the file can be accessed as a regular file. If you also set the R/O at-
tribute, it stays in effect until you change it to R/W. File attributes are
discussed in the section dealing with CP/M version 2.2 and MP/M (in
Chapter 2.).

PIP has several new features to "get around" these file attributes,
and to move files from one user area to another. These features are in
the form of parameters:

On Get file from user area `n ', where `n' can be from zero to fifteen

W Overwrite (delete) read-only files (ignore the R/O attribute)

R Read (copy) system files (files with $SYS attribute)
This parameter also allows a W (ignore R/O attributes)

Copying From User Areas

Use the G parameter to copy a file that is in another user area.
(Remember, you cannot create a copy in another user area, only in your
own). You do not need this parameter to copy a file from one disk
(diskette) to another if the file to be copied (and the copy to be created)
have the same user area number. For example, if ORIG exists in user
area 2 on drive A, you can copy it into a new file COPY in user area 2
on drive B. From user area 2, you can copy any file in any other user
area by using the G parameter, but your new copy can only be created
in the current user area (i.e., the user area that you are currently "in").

HANDLING FILES WITH PIP 139

You change your current user area with the USER command, de-
scribed in detail in the section on CP/M version 2.2 and MP/M.

Disk A

3

copy
copy

You copy

Disk B

user area 0

orig. 1

orig. 2

Disk C

user area 0

orig. I

orig. 2

orig. 3 I I orig. 3

Here is an example of a PIP expression using the G parameter:

*A: = B: JIM . TXT [G3J I

*I

2A >

This PIP expression copied the file JIM .TXT, on drive B in user area
3, to drive A in the current user area . The current user area is 2, as
shown by the system prompt (after the PIP program has been terminated
by a RETURN).
NOTE: to remain compatible with earlier versions of CP/M and still
be compatible with new and future releases of CP/M and MP/M, use
only user area 0. This is the " default" user area that will go unnoticed
in new and future releases , yet will not cause problems with earlier
releases.

If you do use other user areas, you have to first copy PIP.COM to
each user area that receives copies of files. Once you have a copy of
PIP.COM in each user area of one disk drive, you can easily invoke the
PIP program from another drive by specifying the drive letter. If
PIP.COM does not exist in your current user area of at least one active

140 THE CP/M HANDBOOK WITH MP/M

disk drive, then you cannot execute the PIP command. To initially
copy PIP into user areas, use the following sequence of commands in-
volving DDT (dynamic debugger) and SAVE (both commands are
described in Chapter 2):

A> USER 0)

A> DDT PIP.COM

DDT VERS. xx.xx

NEXT PC
1 C80 xxxxxx

-GO I

(Specify user area 0-change
from user area 2.)
(Execute DDT on PIP.COM-
debugger.)
(DDT sign-on message.)

(DDT displays next address after
end of PIP.COM. You use this
address to calculate the number
of pages to use with SAVE.

A> USER 31

A> SAVE 28 PIP.COM

Read-Only and System Files

(Change to user area 3, where
you want to put a new copy of
PIP.COM.)

(SAVE creates a new file,
PIP.COM, in user area 3 of disk
drive A, with 28 pages of memory
-equal to the original PIP.COM.
You derive `28' from the hexa-
decimal value 'I C' where `C'
equals 12, and 'IC' equals 28. IC
is the "high order byte" of the
hexadecimal value under the
NEXT display of DDT, 1C80.)

PIP will not overwrite (delete and recreate) a file that has the read-
only `R/O' attribute set. If you try, the PIP program replies with a
question:

A> PIP B : COPY= ORIG ,(

DESTINATION FILE IS R /O, DELETE (Y/N)? Y

A>

HANDLING FILES WITH PIP 141

In this example , we tried to make a copy of ORIG called COPY-but
COPY (the old COPY) already exists on drive B with the R/O attribute
(if it did not have the R/O attribute , it would have been deleted by PIP
and replaced with the new COPY). PIP displays the message that
COPY (the destination file) is read -only, and asks if we want to delete
the old COPY ('Y/N' stands for "yes" or "no"). We reply `Y' to
delete the old COPY and replace it with the new COPY. (When you
answer `Y' or `N', you do not have to hit RETURN (I).)
NOTE: The new COPY will not have the R /O attribute automatically
set.

If we had answered `N' for no, the old COPY would not have been
deleted, and PIP would have displayed the message:

** NOT DELETED **

If you want to override this PIP action of displaying a message if the file
is R/O and asking you for verification, you can use the W parameter.

The W parameter tells PIP to ignore the R/O attribute. You can use
the W parameter at the end of a PIP expression if you want it to apply to
all of the files in a file concatenation:

A> PIP WHOLE.TXT = PART1.TXT,PART2.TXT,PART3.TXT[W] I

A>

If either the original file or the copy file has the $SYS (system) at-
tribute, then PIP cannot find the files in the disk directory. You can use
the R parameter to ignore the $SYS (and R/O) attributes so that PIP
can find the original file or create the copy file. Use the R attribute in the
same manner as the W attribute was used above.

SUMMARY

PIP is a powerful general-purpose file transfer facility. Although
most CP/M users use it only for simple disk-to-disk transfers, it can do
a lot more:

• Transfers between devices and disks
• Multiple file transfers
• File processing, verification, and formatting.

PIP can be used to advantage to obtain portions of a file, or to join
several files. It can also be used to obtain clean, paginated, tabulated

142 THE CP/M HANDBOOK WITH MP/M

printouts . A working knowledge of the relevant parameters is a definite
advantage . Every CP/M user should therefore read this chapter
completely through once , then read again the details on the options
he/she may use most often.

HANDLING FILES WITH PIP 143

144 THE CP/M HANDBOOK WITH MP/M

4
USING THE EDITOR

INTRODUCTION

Chapters 1 and 2 were designed to teach you everything you need to
know to begin using CP/M. Chapter 3 described the most important
utility program, PIP. This chapter will teach you how to use another im-
portant application program that comes with the CP/M operating
system: the editor, ED. You will be shown how to use an actual editor
program, and you will follow the data transfers between the disk, the
computer's memory, and the terminal.

It is not important to remember the specific commands provided by
ED. These commands are summarized in the Appendix section. What is
important, however, is for you to understand how an editor operates,
and what it can do. If you achieve this goal, you will find most other ap-

plication programs simple to understand (if they are well-designed and
documented). Also, you will probably be able to easily use a word pro-
cessing program, a very useful application program on any computer.

This chapter is useful, but not indispensable . If you feel you are not
interested in learning about the editor, you can go on to the next chapter.

WHAT IS AN EDITOR PROGRAM?

A good editor program allows you to create and edit text files - let-
ters, novels, poems, business forms, or anything comprised of charac-
ters. The program should also let you move from line to line easily, and
change characters by retyping over them, or by deleting and inserting
characters in one motion. It should also be able to find any group of
characters you specify in a file, and do substitutions. A good editor pro-
gram should allow you to merge two files as well as interweave lines of
text from two files.

When you type text using a good editor program, you will type a line
and end it with a Carriage Return (RETURN or CR on some key-

145

boards), just as you would on an electric typewriter. In the future, an
editor program might even make it easier than that; we have certainly
not yet seen the best editor program nor the easiest one to use.

ED, the editor program provided with CP/M, is only a minimal
editor and is not as easy to use as most other editor programs. If you
plan to do a significant amount of editing or word processing, you
should obtain a more powerful editor. There are many editor and
"word processing" programs on the market today that will run on
CP/M or MP/M.

A word processor is a program that includes both an editor program
(for typing text) and a program that runs the printer (for printing text),
making it backspace, underline, justify margins, expand tabs, and type
in boldface type. Take note, however, of exactly what you are buying.
There are some so-called "word processors" that are only printing pro-
grams designed to be used with CP/M's ED program. These are only
formatters, and are not convenient or powerful enough for general use
as word processors.

Shop around as if you were buying a typewriter. You might want bells
and whistles; or, you might want a portable, inexpensive model that re-
quires more effort but will do the job. However, ease of use should be
your primary consideration (especially if you use one for writing). After
reading this chapter, you will know what the minimum set of facilities
provided by an editor should be. ED is sufficient for most simple ap-

plications.

ED, THE EDITOR

The editor program ED.COM usually resides on the System Diskette,
and is executed by typing `ED', followed by the name of the text file
that you are creating or modifying. For example, if you want to create
or modify the file SAMPLE.TXT, type:

A > ED SAMPLE.TXT I

Do not type just `ED'. This is a common error, and will not work. You
must-supply a file name.
NOTE: if you get the message `FILE IS READ/ONLY', or 'SYSTEM
FILE NOT ACCESSIBLE', then you have to use the STAT command
on the file first (CP/M version 2.2 and MP/M). See the section on
CP/M version 2.2 and MP/M in Chapter 2.

If ED cannot find the file that you specify, it assumes that you are

146 THE CP/M HANDBOOK WITH MP/M

creating a new file . This file, specified in your command , becomes the
"source" file . Subsequent ED commands will then bring the source
file's text into the edit buffer, as shown in Figure 4.1.

FILE ON
DISK

INTO
BUFFER

COMPUTER
MEMORY TERMINAL

SAVE
TO DISK

DISPLAY

ED

Figure 4.1: ED's Buffer

COMMANDS

The buffer is a block of memory inside the computer reserved for
ED's text processing . If your text file is large, you can load only one
block of it at a time into the buffer . (Note that this is an inconvenience
inherent to ED that does not exist in more powerful editors.)

You can only type new text in the edit buffer, or change text that is
already in it. However, the buffer is not copied back to the disk
automatically . If you terminate ED (or if you turn off the system)
without saving the text that is in the buffer on a disk file , you will lose
the text in the buffer . Since ED copies the text file into the edit buffer,
your original file (i.e., before it was used with ED) is untouched but
your new text and modifications are lost . Therefore, you should
periodically save the text in the edit buffer, and always remember to
save the buffer before leaving the ED program . You save the buffer by
using ED's ` E' command (E J). The E command also copies the rest of
the source file into the new "source" file that it creates . (This is ex-
plained in more detail later in this chapter.)

Most of ED 's commands consist of a special letter preceded by a
number or symbol determining an amount. These commands are ex-

USING THE EDITOR 147

ecuted by typing them as you would type CP/M commands: the com-
mand, followed by a RETURN (1), which transmits the command.
Other "commands" are special key combinations (like CTRL and Z
(f Z), CTRL and C (f C), etc.) that are transmitted automatically and
do not require a RETURN.

The ED program continually displays the ED prompt:

The E command would be typed like this:

*E1

Several commands act on the text in the edit buffer, while others
transfer text to and from the edit buffer. The edit buffer is illustrated in
Figure 4.2:

CP

1: This is the file SAMPLE.TXT, and this is line 1
2: This is logically line 2 in the file.
3: This is line 3, but the buffer may number
4: it differently (and this is line 4).
5: This is line 5. There are many more lines.
6: This is line 6.

display

Buffer

user editing

Figure 4.2: Text Being Processed

THE `CP' (CHARACTER POINTER) AND LINE NUMBERS

i

The 'CP ' in the illustration is the "character pointer ." It is not ac-
tually displayed on the screen, but is used by the ED program, and is

• Tj
1: This is the file..

148 THE CP/M HANDBOOK WITH MP/M

moved by ED commands. The pointer always points at one character,
and the ED commands usually refer to the characters following (and in-

cluding) the character pointed to by the CP, or the characters trailing
the CP. In other words, you move the CP to the right to go forward in
the text, and you move the CP to the left to go backwards. You will see
examples illustrated in subsequent sections of this chapter.

In addition to the imaginary CP, each line has an imaginary line
number that is not actually part of the text. If you have the newer ver-
sion of ED, it automatically displays the line numbers with the text (and
you can move to any line of text by specifying the line number as a com-
mand, as shown later). If you have the older versions of ED, you have
to turn on the display of line numbers by executing the V command (the
command -V (negative V) turns it off). If you have even older versions,
you might not have line numbers at all (which is unfortunate, since they
do make it easier to move around in the edit buffer). The line numbers,
like the CP, only exist in the edit buffer and are used only to move
around in the buffer. They would not appear in a print-out of the file.

WHAT ED DOES TO YOUR TEXT FILE

For example, assume that the file SAMPLE. TXT already exists, and
contains the text shown in Figure 4.3:

This is the file SAMPLE . TXT, and this is line 1.
This is logically line 2 in the file.
This is line 3 , but the buffer may number
it differently (and this is line 4).
This is line 5 . There are many more lines.
This is line 6.
11

This is line 26.
This is line 27.

This is line 43.

Figure 4.3: A Sample File Is In the Buffer

USING THE EDITOR 149

When you execute the CP/ M command:

A> ED SAMPLE. TXT I

ED sets aside a space in the transient program area (scratch-pad
memory-this will be explained in Chapter 5) for the edit buffer,
creates a temporary output file called SAMPLE. $$$ (to store the edited
file without damaging the original one), and prepares SAMPLE.TXT
to be copied into the edit buffer. The copying is actually done by using
the A (append) command-this will "append" a certain number of

lines into the edit buffer, as shown in Figure 4.4:

*2AJ
1: This is the file SAMPLE.TXT, and this is line 1.
2: This is logically line 2 in the file.

Figure 4.4: The Append Command Is in A

The ED command `2A' appended the first two lines of the text file into
the buffer. If you want to append more lines, you have to do another A

command . This is shown in Figure 4.5.
Now you can modify these lines that are in your edit buffer. You can

also add new lines from the keyboard (by using the I command, des-

cribed later on in this chapter). This is shown in Figure 4.6.
You have now learned how to place lines into the buffer from the disk

file or the keyboard. This is shown in Figure 4.7.
You could have appended the entire file into the edit buffer (unless the
file has more than 6000 characters , and you are not using a 16K version
of CP/M), but for the sake of simplicity, this example sends the newly-
modified text (with your new additions) to a temporary output file, so

that you can append more text to the edit buffer. ED calls this tem-
porary output file SAMPLE.$$$. To send the newly-modified text to
the temporary output file, you use the W (write) command, or you per-

form a "normal" termination with the E (end edit) command or the H

(end and reopen) command . Figure 4.8 shows the use of the W com-

mand.

150 THE CP/M HANDBOOK WITH MP/M

This is the file SAMPLE.TXT, and this is line 1.
This is logically line 2 in the file.
This is line 3, but the buffer may number
it differently (and this is line 4).
This is line 5. There are many more lines.
This is line 6.

This is line 26.
This is line 27.

SAMPLE.TXT

N

* 3AJ

1: This is the file SAMPLE.TXT, and this is line 1.
2: This is logically line 2 in the file.
3: This is line 3, but the buffer may number
4: it differently (and this is line 4).
5: This is line 5. There are many more lines.

Buffer

Figure 4.5: Appending Three More Lines

1 : This is the file SAMPLE.TXT, and this is line 1.
2: This is logically line 2 in the file.
3: This is line 3, but the buffer may number
4: it differently (and this is line 4).
5: This is line 5. There are many more lines.

*11
6: This is a newly-inserted line.
7: This is another added line.
8: t z

Figure 4.6: Adding Two New Lines From the Keyboard

USING THE EDITOR 151

Disk File

Buffer

Figure 4.7: Putting Lines Into the Buffer

Before

1 : This is the file SAMPLE.TXT, and this is line 1.
2: This is logically line 2 in the file.
3: This is line 3, but the buffer may number
4: it differently (and this is line 4).
5: This is line 5. There are many more lines.
6: This is a newly-inserted line.
7: This is another added line.

After

This is the file SAMPLE.TXT, and this is line 1.
This is logically line 2 in the file.

Temporary file SAMPLE.SSS
on disk

becomes
1: This is line 3, but the buffer may number
2: it differently (and this is line 4).
3: This is line 5. There are many more lines.
4: This is a newly- inserted line.
5: This is another added line.

Buffer

Figure 4.8: Saving the Buffer on the Disk

152 THE CP/M HANDBOOK WITH MP/M

The example in Figure 4.8 shows a write operation of two lines. The
lines in the final edit buffer move up to the beginning, releasing more
space to append more lines. The next example shows an append opera-
tion of the next twenty lines.

After modifying the text in the buffer, you could end the ED session
(and write the rest of the buffer to the output file) by using the E com-
mand, as shown in the example in Figure 4.9. The E command also
copies the rest of the source file - the lines not appended to the buffer
- to the temporary output file. Note that the temporary output file
contains the lines of text in their proper order.

This is the file SAMPLE .TXT, and this is line 1.
This is logically line 2 in the file.
This is line 3, but the buffer may number
it differently (and this is line 4).
This is line 5. There are many more lines.
This is line 6.

This is line 26.
This is line 27.

SAMPLE.TXT (on disk)
Append another 20 lines

1: This is line 3, but the buffer may number
2: it differently (and this is line 4).
3: This is line 5. There are many more lines.
4: This is a newly-inserted line.
5: This is another added line.
6: This is line 6.

.

26: This is line 26.

Buffer (in memory)

Figure 4 .9: Appending 20 Lines to the Buffer

USING THE EDITOR 153

This is the file SAMPLE.TXT, and this is line 1.
This is logically line 2 in the file.
This is line 3, but the buffer may number
it differently (and this is line 4).
This is line 5. There are many more lines.
This is line 6.

*EJ

SAMPLE.TXT

renamed to SAMPLE.BAK
(original file)

1: This is line 3, but the buffer may number
2: it differently (and this is line 4).
3: This is line 5. There are many more lines.
4: This is a newly-inserted line.
5: This is another added line.
6: This is line 6.

26: This is line 26.

Buffer

Temporary output file
SAMPLE. $$$ renamed to

SAMPLE.TXT
(edited file)

This is the file SAMPLE.TXT, and this is line 1.
This is logically line 2 in the file.
This is line 3, but the buffer may number
it differently (and this is line 4).
This is line 5. There are many more lines.
This is a newly-inserted line.
This is another added line.
This is line 6.
•
•

This is line 26.
This is line 27.
•
•
•

This is line 43.

Figure 4.10: Finishing an Edit Session

154 THE CP/M HANDBOOK WITH MP/M

As soon as the edit buffer is properly copied into the temporary out-
put file, which is called SAMPLE.$$$, ED does two things: it renames
the original SAMPLE.TXT to SAMPLE.BAK, and it renames SAM-
PLE.$$$ to SAMPLE.TXT. By doing this, ED creates a backup copy
of the original SAMPLE.TXT (called SAMPLE.BAK), and renames
the newly modified SAMPLE.$$$ to SAMPLE.TXT. (See Figure 4.10.)
That is why it appears that ED modifies the file SAMPLE.TXT-ac-
tually, ED modifies the text in the edit buffer and uses SAMPLE.TXT
as a backup and SAMPLE.$$$ as the future version of SAMPLE.TXT.
NOTE: when you execute ED on a file, ED automatically deletes any
`BAK' file associated with the text file (in preparation for the new
`BAK' file that ED creates). The `O' and `Q' commands do not prevent
this action, so be careful.

FILE MANAGEMENT

When you give ED a filename, it looks for the file; if ED does not find
it, ED creates it. This file is called the "source" file, in CP/M's
documentation. When you append text to the edit buffer from the
source file (using the A command), ED copies the text lines from the top
of the file into the buffer, counting the number of lines you specified in
the A command. When you write lines to the temporary output file
created by ED (filename.$$$), you free up space in the buffer in order to
append more lines of text from the source file. As you write to the out-
put file, lines are appended so that they stay in the same order (you can
write specific lines to the output file in order to change that order).
When you finish editing, or terminate ED using the E (or H) command,
ED automatically renames the original file (the source file) to a file with
a BAK extension (e.g., SAMPLE.BAK) to denote it as a backup file,
and D renames the temporary output file (e.g., SAMPLE.$$$) to the
name of your original (source) file (e.g., SAMPLE.TXT), so that
your text file contains the newly -modified text.

ACCIDENTAL TERMINATION

If you terminate ED accidentally, without using the E (or H) com-
mand (i.e., there is a system error, or you inadvertently hit f C to
reboot the system, or the power is cut off), the temporary output file
(e.g., SAMPLE .$$$) will still remain with that filename, and your

USING THE EDITOR 155

original source file (e.g., SAMPLE.TXT) would still be the old copy.
The $$$ file would only have text you had already written to it (so it
might not be useful), the edit buffer would be lost , and the original file
would be the unedited version (i.e., before you invoked ED).
NOTE: use the Q (quit) command to do this on purpose.

You can merge text lines from another text file with the text already in
the edit buffer by using the R command , discussed later in this chapter
(the other file is not modified in any way).

A SESSION WITH THE EDITOR

To create a new text file, first think of a name (a name that is not
already used with another extension). We will use QUOTE.TXT as
an example . Execute the ED command and create QUOTE.TXT by
typing:

A> ED QUOTE.TXT I

In this example, we are in drive A; therefore, QUOTE.TXT will be in
drive A. We are in drive A because the ED program (ED.COM) is in
drive A. The example in Chapter 1 showed how you can execute ED
from another drive by prefixing the drive letter and colon before the
filename ED. You can also execute ED from drive A and put
QUOTE.TXT on drive B by prefixing `B:' to `QUOTE.TXT.'.

ED will display the message `NEWFILE' if it is creating a new file.
When ED is ready for an ED command, it will display the ED `*'
prompt. You can now type any ED command. To insert new text from
the keyboard, you should use the I command. The I command starts
inserting text immediately after the CP (character pointer). Since you
have not explicitly moved the CP (with an ED command), the CP is at
the beginning of the buffer. To start inserting new text, type:

To actually insert text, you type the text as you would on a typewriter.
To stop inserting text, you hold down CTRL while pressing the Z key
(f Z).

When you type `I J', ED moves the cursor (the blinking pointer on

156 THE CP/M HANDBOOK WITH MP/M

the screen, or whatever symbol your terminal display uses) to the next
blank line. You can now type text, which will automatically be inserted
into the edit buffer as you transmit each line. Each line must end with a
RETURN (as with a typewriter) -RETURN (represented with a 1 in
this book) transmits the line to the edit buffer. The line then becomes a
line in the buffer (identified by a line number). If you want to type "a line
in the buffer" that is actually longer than a line you can type at your ter-
minal, use the combination of CTRL and E (} E) to move the cursor to
the next line on your screen without transmitting the line to the edit buf-
fer. When you finally do hit RETURN, the entire line is transmitted to
the buffer. Long lines cannot exceed 128 characters.

We will start the example from the beginning again. Note that you
can use the keyboard editing keys RUBOUT (DELETE), 4 U (delete
the line), + E (return the "carriage" without transmitting the line), and
+ R (retype the last line) in both the old and new versions of ED. You

can use # H (backspace and delete a character) and + X (backspace to
beginning of line) in only the new version of ED.

Here is our example again, from the start:

A> ED QUOTE.TEXT1

NEW FILE

`11

We have not ceased from exploration

wrote T.S. Eliot.

1Z

J

We use the combination CTRL and Z to stop inserting text (+ Z). We
now have two lines of text-the first is the quotation, and the second is
`wrote T.S. Eliot'.

If you wish, you can use the U command before the I command, and
anything you type is automatically converted to UPPER case (although
as you type the text, it appears to be in upper and lower case). To turn
off this automatic UPPER case translating, use the -U command
(negative U).

Now that we have text in the buffer, we can display it. First, we have

USING THE EDITOR 157

to move the CP (character pointer) back to the beginning of the buffer,
since the I command inserted text and moved the CP. Here is an illustra-
tion showing the text and the position of CP in the buffer:

CP

1: "We have not ceased from exploration"

2: wrote T.S. Eliot.

Figure 4.11: The CP is at the End of the Buffer

The manual for ED explains that the CP is between two characters.
This is difficult to visualize and to use, so we changed our description to
make it easier. The CP is an "imaginary" object, a reference pointer to
use with ED commands. When you refer to Digital Research's
documentation, bear in mind that their descriptions are based on CP
being between two characters, and our descriptions are based on CP
pointing to the rightmost of those two characters. The illustration in
Figure 4.12 should clarify this:

AB AB

A A
(Digital Research) (This Book)

Figure 4.12: Showing the CP's Position

Digital Research says that CP is before the first character of a buffer
when moved to the beginning, and we say that CP is at the first
character of a buffer when moved to the beginning.

DISPLAYING TEXT IN THE BUFFER

We will use the T command to display the text in the buffer. The for-
mat of the T command is:

± nT

where n can be zero, or any number, or a number (#) sign. This is il-
lustrated in Figure 4.13. If n is zero, T will display the current line up to

158 THE CP/M HANDBOOK WITH MP/M

Aline I
line 2
line 3
line 4
line 5
line6
line 7
line 8

Buffer

*5T
line I
line 2
line 3
line4
line 5

I [^^ P- ^,
Figure 4.13: Displaying Text

(but not including) the CP (the current line is the line with CP in it). If
you do not specify n, I is assumed. If n is 1 (or if it is assumed to be 1),
the current line is displayed from the CP to the end of the line. If n is a
positive number, T will display n number of lines from the CP (current
line) on; if n is a negative number, T will display lines before the CP
(and not including the CP). If you use the number (#) sign, T will
substitute `65535' (maximum number of lines allowed in the buffer),
i.e., the entire buffer will be displayed. You can type the entire buffer by
moving CP to the beginning of the buffer (by using the B command,
shown in Figure 4.14) and using a number (#) sign with T; other-

Before

*B 1

After

Buffer

Figure 4.14: Moving the Cursor

USING THE EDITOR 159

wise, a number (#) sign will display all of the lines following (and in-
cluding) the CP, and a negative number (- #) sign will display all of
the lines previous to (but not including) the CP.

Here is an example:

'-2T 1

1: We have not ceased from exploration'

2: wrote T.S. Eliot.

If your display does not include the line numbers (numbers followed by
the colon), try executing the V command (version 1.4 of CP/M or
later):

*v1

The':' tells you that the CP is at the beginning of line 3; however, line 3
has no text yet, so the CP is actually pointing to the end of line 2 (after
the `Carriage Return' sequence).

The command `-2T' above tells ED to display only the two lines
before the one containing the CP (i.e., the current line, which is line 3).

In CP/M versions 1.4 or later, you can specify the actual line number
in a T command to display that line. For example, if you just wanted to
display line 1, you would type '1:T' as a command:

2: * I:T J

1: We have not ceased from exploration"

Note that the command `1:' with `T' moved the CP to lint 1 (current
line is now line 1). You can specify a line number as a command to move

160 THE CP/M HANDBOOK WITH MP/M

the CP to that line . For example:

A simple T command will display the current line:

*Td

2: wrote T.S. Eliot.

An easy way to display the entire buffer is to execute two commands:
the B command to move the CP to the beginning of the buffer, and the
T command with a number (#) sign to display the entire buffer. Note that
you can put both commands on the same command line and execute
them:

1: *B#T,j

1: "We have not ceased from exploration"

2: wrote T. S. Eliot.

In the above examples, the CP pointed to the first character in the line.
You can move the CP in the current line by using the C command:

± nC

C will move the CP + n characters forward, or - n characters backward.
For example , if the CP is at the beginning of line 1, and you type this

command:

USING THE EDITOR 161

1: "We have not ceased from exploration,"
A -

2: wrote T. S. Eliot.

*5G1

1-CP

The CP would be pointing to the sixth character ('a', since a quote
counts as one character) in line 1. The command `T' would display the
line from the CP to the end (including the CP):

1: *T,j

ave not ceased from exploration"
*

The command `OT' would display line 1 from the beginning up to but
not including the CP:

1: *OT)

We h

i t

SAVING THE FILE AND ENDING THE ED SESSION

At this point, you should learn how to save the contents of the buffer
and leave ED. The easiest way to save and exit ED at the same time is to
use the E command:

91

162 THE CP/M HANDBOOK WITH MP/M

Wherever you are in the buffer, this command will empty the buffer
(and the rest of the source file, if you had not appended the entire source
file) into the temporary output file and rename the output file to the
name of your source (original) file. If you started with an empty
QUOTE.TXT and added the text as shown in the previous examples,
you should end up with a QUOTE.TXT containing a line by T.S. Eliot,
and a QUOTE.BAK that is empty (a backup of the file before you
edited it).

APPENDING LINES TO THE BUFFER (EDITING AN EXISTING
FILE)

When you have an existing text file, and you execute ED to edit it, the
A command then has to be executed to bring text lines into the edit buf-
fer. Otherwise, there will be no text in the buffer except the text that you
insert by using ED's I command. You might want to insert new text
before the first line of your existing text file -by using the I command
to insert new text before appending the existing file's text to the buffer
with the A command; however, you can easily do this after the old text
is in the buffer. So, you will want to use the A command first to see the
old text. The A command adds ("appends") lines to the end of the buf-
fer.

The A command's format is:

nA

The command A will append n lines of text from the original (source)
text file. If you do not specify n, A appends only one line. If you use a
number (#) sign instead of n, A will bring the entire source file (up to
65535 lines) into the edit buffer. Since most text files are not that large,
you can use the form `#A' to bring in any file that would probably fit in
the edit buffer. If you specify a zero for n, the A command will append
to fill halfof the buffer (useful for large files). Use the form `OA' in con-
junction with 'OW' to append and write-out half of the buffer (dis-
cussed in this chapter in "Writing Lines Out to the File").

If you append only a portion of your source (original) file to the buf-
fer, your next A command would start appending from the source file
where the last A left off. You would easily append ten lines, change
some text, write out the ten lines to the temporary output file (with the
W command discussed later), and append more lines from the source
file. Or, if you have enough room in the buffer, you could append more

USING THE EDITOR 163

lines from the source file to the end of the existing lines in the buffer.
Here is a simple example, using QUOTE .TXT as a source file:

A > ED QUOTE.TXT j

.V) (if using version 1.4, not needed in version 2.2)

:*Aj (appends only one line)

1 :*2Aj (appends next two lines, but there is only one
more line in the file anyway)

2:*B#T j (go to beginning and display all lines)

1:-We have not ceased from exploration"

2:wrote T.S. Eliot.

Since there are only two lines in QUOTE.TXT, a simple `#A' command
would suffice to bring in all of the lines.

MOVING AROUND IN THE BUFFER

With text in the buffer, you can move around at will and change any
text, as well as insert new text anywhere. You can also locate and
substitute pieces of text, and append other lines of text from a special
library source file (discussed later).

If you are following the examples and editing QUOTE.TXT, you
should now go the bottom of the buffer and insert more text. The -B
(negative B) command is used to move to the end of the last line, as in
this example:

1: "We have not ceased from exploration,"
2: wrote T.IS. Eliot.

Buffer

1:*-Bj

164 THE CP/M HANDBOOK WITH MP/M

The "end of the last line is actually a'Carriage Return', which in ASCII
code is a combination of RETURN and LINE FEED : two characters
that perform the operation of returning the carriage and generating a
new line . Therefore , the "end" of the last line is actually the beginning
of the next new line; however , the next new line's number is not dis-
played until you insert characters using the I command. You can insert
characters that will form the new line. For example:

1: "We have not ceased from exploration"
2: wrote T . 5. Eliot.
3: "And the end of all our exploring,
4: will be to arrive where we started,
5: and know the place for the first time."

A

Buffer

*1 1

3: "And the end of all our exploring, j

4: will be to arrive where we started, j

5: and know the place for the first time.

6: U1

Now you can display the entire buffer by using the B and T commands:

:'B#Tj

1: "We have not ceased from exploration'

2: wrote T.S. Eliot.

3: "And the end of all our exploring,

4: will be to arrive where we started,

5: and know the place for the first time."

USING THE EDITOR 165

The easiest way to move to another line is to use line numbers. If you
have version 2.2 of CP/M, ED will automatically display line numbers.
If you have version 1.4, this feature is turned off; turn it on by executing
the ED command V (-V turns it off again). If you have a version earlier
than 1.4, you are out of luck -you cannot display line numbers and
must use the L command to move to another line.

To select a line, type the line number followed by a colon as an ED
command:

2:1

To select a range of lines, type the first line number , followed by two
colons and the second line number , as in this example (the T command
can also be used to display the range of lines):

1 : "We have not ceased from exploration"
2: wrote T.S. Eliot.
3: AAnd the end of all our exploring,
4: will be to arrive where we started,
5: and know the place for the first time.

Buffer

2: *3::5T1

3: "And the end of all our exploring,

4: will be to arrive where we started,

5: and know the place for the first time."

When you specify a single line , the CP is moved to the beginning of
that line. When you specify a range of lines, the CP is moved to the be-
ginning of the first line in the range , and ED counts the number of lines

166 THE CP/M HANDBOOK WITH MP/M

in the range (in this case , three), and applies that number to the T com-

mand (i.e., `3T') to display the range . The CP remains on line 3.

You can also move up and down lines by using the L command. The

format for the L command is:

±nL

The L command will move the CP + n lines forward or -n lines back-
ward in the buffer, and put the CP at the beginning of the line selected.
Here is an example:

The form `OL' (where n is zero) moves the CP to the beginning of the
current line.

You can use line numbers to select a range of lines that begin at the
current line by preceding the ending line number with a colon:

2: *:5T I

2: wrote T.S. Eliot.

3: And the end of all our exploring,

4: will be to arrive where we started,

5: and know the place for the first time.''

CHANGING , INSERTING AND DELETING TEXT

Text in a line is changed by moving the CP to the text and deleting ex-
isting text and inserting new text . You can also find a group of
characters and substitute another group , as discussed in the next sec-
tion.

When you delete a line of text , the line numbers reflect the deletion

USING THE EDITOR 167

and change accordingly, as in this example:

2:*15T1

1 :''We have not ceased from exploration'

2:wrote T. S. Eliot.

3:"And the end of all our exploring,

4:will be to arrive where we started,

5:and know the place for the first time.''

1:2:1

2:K 1

2:*1::4T1

1:"We have not ceased from exploration"

2:"And the end of all our exploring,

Twill be to arrive where we started,

4:and know the place for the first time."

The K command above deletes line 2, and the other lines "move up" to
use the space. The opposite occurs when you insert a line - the other
lines "move down" to accommodate the newly-inserted line.

The format of the K command is:

+ nK

The K command will delete ("kill") the current line if no n is specified.
Otherwise , the K command will delete either + n or - n lines from the
current line. If you supply a number (#) sign for n, K deletes 65535 lines
following (and including) the current line (+ #K), or 65535 lines behind
(and not including) the current line (-#K). Use these forms to clear out
unwanted lines from your buffer, but remember - you cannot bring
back those lines (unless they already exist in the source or backup file).

To delete characters (not entire lines), you use the D command:

+nD

168 THE CP/M HANDBOOK WITH MP/M

The D command deletes (erases) the character pointed to by the CP
(character pointer) if no n is specified. Otherwise, the D command
deletes + n characters following (and including) the CP, or - n
characters behind (and not including) the CP.

Here is an example: we will change the word `from' to `ROM' (and
then back to `from'). We will do it the hard way - moving the CP by us-
ing the C command, deleting `from' by using the D command, and in-
serting `ROM' by using the I command:

1: "We have not ceased from exploration"
2: wrote T. S. Eliot. A.
3: "And the end of all our exploring,
4: will be to arrive where we started,
5: and know the place for the first time."

1: We have not ceased ROM exploration".
-do

CP

CP

Buffer

1: *1.4TJ

1: "We have not ceased from exploration"

2: "And the end of all our exploring,

3: will be to arrive where we started,

4: and know the place for the first time."

1: *T,j

1: "We have not ceased from exploration"

1: *20CJ

1 : *4DIROMf ZOLTJ

1 : "We have not ceased ROM exploration"

USING THE EDITOR 169

In this example, we move the CP to the 21st character by using the
command '20C'. Counting the character pointed to by CP, we delete 4
characters using the D command. Then we use the I command to insert
`ROM' (terminated by Z)-note that the I command inserts before
the CP and moves the CP. The D command deletes the CP character and
also moves the CP. We use the L command to move the CP to the begin-
ning of the line, and we use the T command to display the line.

This is a new form of the I command:

linsertions fZ

It performs the same function as I 1 except that it does not automatical-
ly insert carriage returns to generate new lines. If you are going to
change a group of characters including a `Carriage Return' sequence,
use the S command (substitute) described in the next section, because it
is much easier than counting characters in order to move the CP proper-
ly.

FINDING AND SUBSTITUTING TEXT

An easier way to move the CP to a group of characters in the text is to
"find" that group of characters by using the F command. The S com-
mand, discussed next, may be used to "find and substitute." The F
command is a primitive version of the S command, and will be de-
scribed first.

An example will show the format for the F command. We will execute
F to find `ROM' in line 1:

*FROM)

The illustration shows where the CP is at this moment:

We have not ceased ROM A exploration"
CP

The F command moves the CP to the character immediately following
the last character found , in order to make it easier to use the D com-
mand (to delete the characters found). We will move CP back to the
beginning of the line, and execute the F command along with the D and

170 THE CP/M HANDBOOK WITH MP/M

I commands in the next example:

1:4L)

1:*FROM f Z-3Dlfrom # ZOLTJ

1:"We have not ceased from exploration"

-3 characters from the CP (i.e., `MOR '). The CP is now in position for
us to use the I command to insert " from ." The `OLT' command com-
bination moves the CP to the beginning of the line and displays the line.

Note that you can end an F command with a RETURN if you are not
going to include another command on the same line.

The F command can also begin with a number (i.e., nF where n is a
positive number) that will tell it to find n occurrences of the group of
characters . For example , if you type the command ` 5Fthis 1', the com-
mand will not stop or move the CP until it finds the fifth occurrence of
`this'. The F command can search the text that is in the buffer ; in order
to search the entire source file , you have to use the N command (dis-
cussed in "Advanced ED Operations").

If you are trying to find a group of characters including the Carriage
Return sequence , you can substitute a special key combination, +L, to
represent the sequence of RETURN and LINE FEED. In our example
with the S command, we will demonstrate the use of +L.

The S (substitute) command is the one most often used to find and
substitute groups of characters. The S command combines the actions
of the F, D, and I commands shown earlier . The format for the S com-
mand is:

nSoldtext+ Znewtext }Z^

The S command searches the buffer for the group of characters oldtext
and substitutes the group of characters newtext. You can use t Z or
RETURN to end the newtext string (use f Z if you want to add another
command to the S command). You can execute this substitution n
number of times, and it will execute until it reaches the nth time, or until
it reaches the end of the buffer.

For example , if you typed the command "#SPeking ZBeijing J ",

it would substitute the word "Beijing" for "Peking " throughout the
text in the buffer (the number sign (#) represents 65535 times).

USING THE EDITOR 171

We will use the S command to alter our example and change the text
from prose to poetry . First, we will correct the end of the first line and
the beginning of the second line in one S substitution:

1:*2Tj

1:"We have not ceased from exploration'

2:-And the end of all our exploring,

1:*S" 4L" 4Z/ $L $.ZB2T j

1:"We have not ceased from exploration/

2:And the end of all our exploring,

In the above example, we use the S command to find the group of
characters starting with unquote , and ending with a quote on the next
line (} L stands for a Carriage Return), and substitute a slash followed
by a Carriage Return . We then execute the combination ` B2T' to move
the CP to the beginning of the buffer and display the next two lines.

Our next example will substitute a slash (/) for a comma (,) in two
lines:

1: *2 4TJ

2:And the end of all our exploring,

3:will be to arrive where we started,

4:and know the place for the first time."

4:*2:1

2:*2S,+Z/+ZB4T J

1:-We have not ceased from exploration!

2:And the end of all our exploring/

3:will be to arrive where we started/

4:and know the place for the first time."

172 THE CP/M HANDBOOK WITH MP/M

In this example , we first move the CP to the beginning of line 2 ('2:'),
and then perform the substitution (`/' for `,'). Then we move the CP to
the beginning of the buffer and display four lines (B4T).

We need to put only the first characters of lines 3 and 4 into upper
case:

1.*3:j

3:*DIW+ Z1 LDIA+ ZB4T j

1:''We have not ceased from exploration/

2:And the end of all our exploring/

3:Will be to arrive where we started/

4:And know the place for the first time.''

In this example, we move the CP to the beginning of line 3 and delete
the first character (D command deletes `w'). Then we insert (I com-
mand) a capital W. We move the CP to the next line (1L command),
delete the first character (D command deletes `a'), and insert a capital
A. Finally, we move the CP to the beginning and display four lines.

WRITING LINES OUT TO THE FILE

Normally, you would end your ED session by using the E or H com-
mands. Each performs a write operation on the entire buffer; i.e., it
writes the lines of text to the temporary output file. Both commands
also copy the rest of the source file (i.e., the lines that were not append-
ed to the buffer) to the output file, and rename the files so that you end
up with the newly-modified text in the source file. The E command also
terminates ED; whereas the H command keeps you in ED and prepares
the new source file for further editing.

If you just want to write lines to the output file without copying the
entire buffer or the rest of the source file, use the W (write) command.
The W command takes the following form:

nW

USING THE EDITOR 173

The W command writes the next n lines from the current line (including
the current line) to the output file . The output file is the temporary file
with `$$$' as an extension. If you do not specify n , the current line is

written out to the file.
To illustrate the W command , we will add more lines to our example

and write several lines out to the temporary output file:

5:

6: - wrote T.S. Eliot 1

7: Z

6:B#Td

1:"We have not ceased from exploration/

2:And the end of all our exploring/

3:Will be to arrive where we started/

4:And know the place for the first time."

5:

- wrote T.S. Eliot

1:*3W)

1:#TJ

1:And know the place for the first time.''

2:

- wrote T.S. Eliot

In this example , we first add new text to the bottom (`-BI' commands)
of the buffer (use a RETURN to make a blank line, and an Ito insert a
tab space). Then we display the entire buffer with the CP at the begin-
ning of the buffer ('B#T' commands). We then output the next three

174 THE CP/M HANDBOOK WITH MP/M

lines, including the current line (lines 1, 2, and 3). These lines are now in
QUOTE.$$$, the temporary output file. The remaining lines of the buf-
fer are now renumbered. The last command ('#W') outputs the next
65535 lines including the current line, which outputs the remainder of
the buffer. The buffer is empty, and ED displays no line number (`: *').

We still have to save the rest of the source file (if there were any unap-
pended lines) and rename the temporary output file QUOTE.$$$ to
QUOTE.TXT (and rename the old QUOTE.TXT to QUOTE.BAK).
The E and H commands will do these operations automatically.

A special form of the W command goes with the `OA' form of the A
command - 'OW' (where n is zero) will write-out half of the buffer, and
`OA' will append to fill half of the buffer. The number of lines that equal
half of the buffer depends upon the length of your text lines and the size
of your system. These forms are mostly used to "pull in half a buffer,
push out half, pull in another half, etc."

If you want to rearrange lines in the buffer, or interweave lines from
another file, then you must use special commands (described in "Ad-
vanced Operations") to bring lines from files to the buffer, and then
write the finished version out to a file by using the W command (or, save
the entire buffer and the remainder of the source file with the E or H
commands).

ADVANCED ED OPERATIONS

Searching Through the Source File

You can use the N command to do a "find" (F command) on the buf-
fer and the rest of the source file. The N command operates in the same
manner as the F command but does not stop at the end of the buffer -
it performs an automatic append and continues to append lines from
the source file until it finds the group of characters that you specified in
the command.

The format for the N command is:

nNtext

NOTE: braces { } denote an option between two commands. The N
command searches for the nth occurrence of text in the lines following
the CP in the buffer; if it does not find the nth occurrence, it will append

USING THE EDITOR 175

lines from the source file into the buffer until it does. You can end your
text string with I Z if you are going to add another command; other-
wise, you can use RETURN.

The N command will put the CP after the last character of the nth oc-

currence of text, just like in F commands.

Inserting Text From a Library Source File

A "Library Source File" is a convenient term in Digital Research's
documentation for any file with a `LIB' extension (e.g., SAMPLE.LIB).
You can use a "library source file " as an alternate source file-a file
with text that you want to insert into the buffer to merge with lines
from the original source file. To do this, you must first have a file with
a `LIB' extension that already has the text in it.

The format for the R command is:

Rfilename

The R command inserts the lines from the LIB file that you specify in

filename. It will insert the lines at the current position of the CP in a way
similar to the I command. R will insert the entire `LIB' file until it finds
the end-of-file (I Z) marker.

Transferring Lines To and Inserting Lines from a Temporary File

If you have version 1.4 or a successive version of CP/M, you can use
the new X command to transfer lines from the buffer to a temporary
"holding" file, and you can use the R command to insert the lines into
the buffer from this "holding" file. The "holding" file is named
X$$$$$$$.LIB and only exists while the ED program is running. Any
normal termination of ED will delete the file, but if you terminate ED
with a f C (warm boot), the file will still be there (however, once you ex-
ecute ED again, the file is deleted).

The format of the X command is:

nX

The X command transfers (copies) the next n lines from the current line
to the temporary file X$$$$$$$.LIB. The lines in the buffer will remain
there: they are only copied to the temporary file. If you wish, you can
use the K command to delete the lines after copying them. The trans-

ferred lines accumulate in the temporary file in the order in which they

176 THE CP/M HANDBOOK WITH MP/M

are copied by successive X commands. Using this command, new text
may be built in successive blocks.

The lines can be retrieved by using the R command in the form `R'
without the filename. All of the transferred lines are then inserted
following the CP (similar to the I command). However, the R command
does not empty the temporary file, it simply copies the lines. You can
retrieve them again and again (useful for repetitious lines). You can
empty the temporary file (i.e., delete it) by executing the form `OX'
(where n is zero) of the X command.

If you want to preserve the temporary file X$$$$$$$.LIB, use f C to
abort ED, and immediately renaFne the file (to get rid of the LIB exten-
sion) so that it won't be destroyed when you execute ED again.

Juxtaposition

The J command is used to juxtapose three groups of characters in a
text. It finds a group of text, juxtaposes a second group, and deletes the
characters following this pair until it finds yet a third group of text, ef-
fectively juxtaposing all three groups of text.

The format for the J command is:

nJstringlfZstring2} Zstring3

The J command starts searching from the CP in the buffer for the first
occurrence of `stringl.' If it finds 'stringl,' the J command inserts
string 2 immediately following 'string1', and moves the CP to the end of
`string2'. The J command then looks for `string3'; if it finds `string3',
the J command deletes all characters between `string2' and `string3',
and leaves the CP pointing to the first character of string3. If the J com-
mand does not find `string3', it doesn't delete anything. The J com-
mand does this n number of times, or until it runs out of lines in the buf-
fer.

One use of the J command is to shorten lines of text. Pick a group of
characters that will be the end of the line to be shortened. They will be
the `string l'. The concept is to juxtapose them to the Carriage Return
sequence, represented by + L ('string3'). This result is achieved by in-
serting a blank or null `string2'.

USING THE EDITOR 177

Repeating a Set of Commands

You can string together several ED commands into one "command"
that can then be executed repeatedly. The M command (for "macro")
takes the following form:

nMstringofcommands

Group your commands into `stringofcommands', preceeded by `M',
and M will execute the commands n times, if n is greater than one. If n is
zero or one, the `stringofcommands' are executed repeatedly until an
error occurs (like reaching the end of the buffer).

Here is an example that changes all occurrences of `Peking' to
`Beijing' within the current buffer, and dispatches each line that is
changed:

MSPeking+ZBeijingf ZOTT

ED'S ERROR CONDITIONS

When an error occurs within the ED program, ED displays the last
character it saw before the error, and one of the following error in-
dicators:

? Don't recognize the command , what is it?

The buffer is full. Use one of the commands D, K, S, W , E, or H to
remove characters . Or, your string with F, N, or S is too long.

Cannot execute the command that many times (as in an F command
reaching the end of a buffer).

0 Cannot open the LIB file in an R command (check to see if the LIB
file exists, or if you used the right filename).

Figure 4.15: ED's Error Messages

178 THE CP/M HANDBOOK WITH MP/M

Newer versions of CP/M display `BREAK x AT c' where x is one of
the error symbols, and c is the ED command that was executing.

Occasionally, the system behind ED (i.e., CP/M or MP/M) detects a
system error condition (such as a disk error). Depending upon the con-
dition, you can usually terminate ED by doing a } C (warm start), but
you must first retrieve the original copy of the source file. For example,

if CP/M detects a CRC (cyclic redundancy check) error, it will display:

PERM ERR DISK d

where d is your current disk drive. You can choose to ignore the error by
typing any character at your terminal (however, you should check your
buffer for mistakes), or you can perform a warm boot (} C) or a cold
boot (reboot the system) and retrieve the BAK file (file with the BAK
extension, e.g., QUOTE.BAK).

CP/M Version 2.2 Enhancements Summary

In CP/M version 2.2, ED assumes that the line numbering option is
always on. To eliminate the line numbers, type: - V. (Of course, this
mode can be reinstated with : V.)

When the insert mode is used (I), the usual CP/M control characters
may all be used: DEL, +C, tE, +H, 4J, #M, +R, +U, +X. They
are described in Appendix D.

Finally, ED respects the file attributes of version 2.2. For example,
a read/only file may be examined, but not changed. If this file must be
modified, then its read/only status must first be changed to R/W, by
using a STAT command.

SUMMARY

In this chapter, you have learned how to use an editor, ED. ED is a
general text editor that allows you to modify text with just a few key
strokes. ED is used most often to create a simple file, such as a program
(if no other specialized editor is available). Although ED's commands
are less convenient than a specialized word processor, it can be used to
type letters or documents.

ED is a convenient tool for correcting and modifying existing files.
(In particular, ED can be used to "clean up" a System Diskette that has
erroneous or spurious characters due to mishandling.) ED can also be

USING THE EDITOR 179

used to substitute new words or lines into a file . Summaries of ED's
control characters and commands are presented in Appendices D and
E.

In this chapter, you have not only learned how to use ED, the editor,
but you have learned to use many commands , control characters and

other conventions . You have also learned how to operate on files, and
have followed transfers of text between disk , memory and CRT. This
knowledge will help you understand the operation of most other pro-
grams on the computer.

180 THE CP/M HANDBOOK WITH MP/M

5
INSIDE CP/M (AND MP/M)

INTRODUCTION

This chapter will describe the internal operation of the CP/M oper-
ating system. You will want to read this chapter if you are interested in
learning about the ways in which an operating system works, or plan
to modify or use some of CP/M's routines. However, if you only wish
to use CP/M to accomplish a specific task, the information presented

in this chapter is not necessary.
This chapter will be of greatest value to a systems programmer, or

any person already familiar with programming who wants to under-
stand how CP/M operates. Since a book on CP/M would not be
complete without this information, this chapter is presented for these
specific readers. If you want to know "what is happening under the
hood," read on.

We will first present a simplified overview of CP/M's operation, by
introducing its logical components, their roles, and the way they interact
with each other. After that the memory allocation, i.e., the way in

which these software modules are spread over the memory will be de-
scribed, as well as the organization of the file system. Then, each of
CP/M's three modules will be presented in detail along with the
commands that are provided to use their capabilities. Another section
will discuss the problems encountered when adapting CP/M to new
hardware configurations and an example of CP/M alterations to
make the system behave as a menu-driven system, will be shown.
Finally, a special section will be devoted to MP/M.

181

AN OVERVIEW OF CP/M's OPERATION

Flow of Control

CP/M has three functional modules. They are called CCP (Console
Command Processor, BIOS (Basic Input/Output System), and BDOS
(Basic Disk Operating System). (See Figure 5.1.)

USER
AT TERMINAL

Figure 5.1: Flow of Control

182 THE CP/M HANDBOOK WITH MP/M

The function of CCP is to communicate with the user and to inter-
pret the commands typed at the keyboard. CCP is primarily a command
interpreter and uses the resources provided by the other two modules,
BIOS and BDOS. This is only a simplified description since we will
later see that CCP, in fact, also does internal processing. Conceptually,
CCP can be viewed as the "intelligent part" of the operating system,
while the other two modules are service modules.

BIOS includes a collection of peripheral drivers, i.e., routines in
charge of communicating with the various devices connected to the
system. BIOS' function is to send or receive status and data information

between a device and CCP's debugger. BIOS is called by CCP, with
specific parameters specifying the service required. This is illustrated
in Figure 5.1.

BDOS is in charge of managing the disk files. It includes a number
of utility routines that will perform the required functions on the disk.
Like any good disk-operating system, BDOS's purpose is to make the
file management invisible (or "transparent") to the user. BDOS will
go through all of the chores required to locate the various blocks of
information spread over the surface of the diskette, verify the validity
of the access and the integrity of the data, and efficiently allocate and
release storage.

Memory Allocation

CP/M partitions the available memory into four zones, as shown in
Figure 5.2. The top of the memory is reserved for the CP/M routines
proper, i.e., for CCP, BDOS, and BIOS, as shown in Figure 5.2. A
few locations at the bottom of memory are reserved for the system.
These are the first 256 memory locations, i.e., page 0 (described in
more detail later). Finally, the largest part of memory, between location
0100 hexadecimal and CBASE (called TPA) is available for program
execution. This standard memory allocation loads programs at 100H
in S-100 bus computers such as Cromemco, Imsai, Altair, and North
Star. However, in the case of other computers (e.g., the TRS 80 and
Heath H8) with pre-stored programs in ROM in low memory, the
programs start at 4300H.

The TPA or Transient Program Area is the name used in CP/M
documentation for any program to be executed. CP/M assumes that
the system has 16, 32, 48, or 64K. In a 16K system the base of CCP,
called CBASE, is at memory address 2900 (hexadecimal). For each

INSIDE CP/M (AND MP/M) 183

SEARCH
OPEN

CLOSE

READ
WRITE

SELECT

ERA
DIR
REN

SAVE
TYPE

CLOSE
WRITE

BIOS

BOOTSTRAP
LOADER

BDOS

CCP

TPA
USER PROGRAM

AND DATA

RESERVED

Figure 5 .2: CP/M Memory Map

0

16K added to the system, this address is incremented by 4000 (hexa-
decimal). This means that every 16K of memory added to the system
extends the TPA by that amount.

It will be seen later that a user program may use almost all of
memory by overlaying CCP or other areas of memory belonging to
CP/M routines. This will be discussed later in more detail. However,
this means that when the program finishes execution, it should bring
CP/M back into memory before exiting.

184 THE CP/M HANDBOOK WITH MP/M

0000 BOOTSTRAP LOADER

0005 ENTRY TO FDOS FBASE

005C

006C

0080

0100

2900

3200

TFCB

TFCB + 16

TBUFF

TPA

TBASE

cbose] +4000

per odd'I 16K
fbase over l6K

Figure 5.3: Standard CP/M Map

DETAILED DESCRIPTION

The File System

One of the primary functions of any disk operating system (DOS) is
to provide effective and convenient management of disk-based files.
An understanding of the overall organization of the file system is,
therefore, required to understand the operation of the disk operating
system proper (BDOS for CP/M) as well as the operation of CCP,
which constructs and manipulates file descriptors. All of the file pro-
cessing is done between CCP and BDOS, and the BIOS portion of
CP/M does not have to worry about the explicit nature of a file. BIOS
will essentially transmit and receive simple data streams. Let us examine
the CP/M file structure.

A file is a logical unit that contains text, data, or programs. The
disk operating system's task is to implement this logical facility with

INSIDE CP/M (AND MP/M) 185

the physical resources provided by the storage medium, i.e., the diskette
in our case. Let us now see how this is done.

We have already explained that diskettes are organized in tracks and
sectors. Each sector on a standard 8 inch diskette contains 128 bytes
of information. In CP/M's nomenclature, this is called a record.
Every file on the diskette is a collection of records. Since it is not
possible to keep a file as a complete sequence of records on the disk, it
is necessary to use sectors spread over the entire surface of the disk.
Some form of list structure must be established to keep track of all
the records associated with a file. Many techniques may be used for
this purpose. In the case of CP/M, the list of sectors belonging to a
disk file is contained in a special entity, called a descriptor in computer
science terminology, or the file control block in CP/M's nomenclature.

With CP/M, each file may have up to 16 units. Each unit has from
0 to 128 records, i.e., from 0 to 16K bytes. The largest CP/M file may
therefore have up to 16 units of 16K bytes or 16 x 16K = up to 256K
bytes. This is slightly larger than the maximum capacity of a standard
8 inch diskette. Each file control block (FCB) describes up to 16K
bytes of a particular file. Additional mechanisms are provided to link
together up to 15 additional extensions of the file.

Disk utilization

user

files
241 K for

standard 8"

DIRECTORY

CP/M system usage

bootstrap loader

I

outer 2 tracks
(3 for 5'/4" diskette)

Figure 5.4: Disk Space Utilization

186 THE CP/M HANDBOOK WITH MP/M

The actual utilization of disk space is shown in Figure 5.4. The
outer two tracks of the diskettes are used to store the CP/M system.
The rest of the disk is used to store the files and file directory.

The file control block itself uses 33 bytes and is stored in a directory
area of the diskette reserved for that purpose. (See Figure 5.4.) When-
ever the file is active, i.e., accessed through CP/M, its FCB is brought
into the transient program area so that it can be accessed quickly and
conveniently by the operating system.

We have accomplished our task: that of mapping a logical file onto
the sectors available on a standard diskette. This was done by keeping
a directory of the blocks, allocated to the file, in a special location
called FCB.

A basic requirement of any good operating system is that the user be
able to designate a file by using a symbolic name (users find it a nuisance
to have to refer to files by numbers). CP/M provides this facility,
along with an additional safeguard that also requires the user to specify
the type of the file. Therefore, a mechanism must be provided for
locating an actual file when its logical name is provided, by looking at
the file directory until a match is found between the name provided by
the user and the directory's entry. This association between an actual
file and its name is performed within the FCB. The other essential part
of the file control block (FCB) is the name of the file. This is shown in
Figure 5.5.

0 1 2 3 4 5 6 7 8 9 10 1 1 12 15 16

ET FN FD X X RC DMEX

I I
NAME - I- TYPE► I

FILE NAME

DISK ALLOCATION MAP

Figure 5.5: The File Control Block

31 32 33 34 35

NR

The next task associated with efficient file system design is to pro-
vide security and safety features for the period when files are being
accessed. For example, files may be specified as Read-Only or Read-
and- Write. Also, password access may be specified for a file, or a file
may be executable but not readable, and equipped with several pro-

INSIDE CP/M (AND MP/M) 187

tection devices that prevent unauthorized access or execution. CP/M
version 1.4 provides virtually no such safeguards, but it has reserved
several bytes in the FCB (File Control Block) to incorporate this safe-
guard. CP/M version 2.2 now provides four file attributes: R/O,
R/W, SYS, and DIR.

Finally, a number of bytes are required for system bookkeeping
functions. They are shown in Figure 5.5. In particular, location NR
in position 32 contains the next record number to read or write.

Let us review the fields of the File Control Block shown in Figure
5.5. It contains eight fields which are, from right to left:

ET (position 0): This is the entry type. It is normally 0, and
not used in CP/M 1.4. It is the drive code
in CP/M version 2.2 or MP/M.

FN (positions 1-8): This is the file name containing up to eight
characters. Any character not supplied by
the user will be entered as an ASCII blank.

FD (positions 9-11): This is the file type. It has one to three alpha-
numeric characters and is similarly com-
pleted with ASCII blanks if necessary.
Whenever the directory of a diskette is
listed, the file name and file type are
displayed or typed. In CP/M version 2.2,
two bits indicate the attribute, and one bit
indicates that the file has been updated.

EX (position 12): This is the file extent, normally 0.

XX (positions 13 & 14): This is a field not used in CP/M 1.4,
normally 0.

RC (position 15): This is the record count. A file module
may have from 0 to 128 records (up to
16K bytes). It is called the current extent
size.

DM (positions 16-31): The disk allocation map keeps track of
the actual disk sectors used by this file
module.

188 THE CP/M HANDBOOK WITH MP/M

NR (position 32): This contains the next record number to
read or write, normally 0, and called CR
in CP/M version 2.2. R0-1-2 (positions

33-35) is used only by CP/M version 2.2
for random accesses and represents the
optional record number (0 to 64K).

System Operation

Under the CP/M operating system, each machine language pro-
gram is installed or loaded within the transient program area (shown
in Figure 5.2). In "standard CP/M," it starts execution at address 100H.
In CP/M terminology, the program is called a "transient" and may
use the operating system resources by executing a JMP to address 05H.
This address is the gateway to the operating system. It is a single fixed
entry point independent of the actual memory size and results in a
transfer of control to the CP/M. The actual CP/M routines are re-
sident in the high end of memory, (as shown in Figure 5.2). The call to
the operating system must be accompanied by a parameter specifying
the service requested. This parameter is passed as a function number
and is contained in the C register of the 8080 or the Z80. Twenty-seven
codes are provided by CP/M 1:4 (36 for CP/M 2.2) to access the various
I/O devices, including the disk files.

CP/M Execution

From the CP/M user's point of view, the system works in the follow-
ing manner: the CCP (Console Command Processor) displays the
system prompt, and waits for a command. The actual transmissions
are handled by the BIOS (Basic Input/Output System), and the
command line ends up in CCP's buffer.

When CCP receives the command (and associated filenames), it
executes the command immediately if the command is built-in (i.e.,
residing permanently in the system's portion of the computer memory).
If the command is not built-in, CCP assumes that the command is a
transient program with a filename of type "COM" (e.g., PIP.COM),
and asks BDOS to find the file and read a copy of it into the TPA
(Transient Program Area), the unused portion of the computer memory
(i.e., not already used by the CP/M system components). CCP then
constructs a File Control Block for the file(s) to be acted upon by the
command (or program).

INSIDE CP/M (AND MP/M) 189

If there is more than one filename, the CCP constructs a File Control
Block for each file, but assumes that the new program in the TPA (i.e.,
the transient command) will handle finding and accessing the files.
The CCP only looks for the first file by calling BDOS and asking for a
copy of the file.

The CCP then terminates , thus freeing space in the computer memory:
the transient program can now overlay the space used by CCP.

From the system point of view, all files look the same . BDOS finds
the file by looking at the File Control Block created by the CCP. This
FCB is half-empty and only contains the filename . Each file on the
diskette has its own FCB (a copy of the last one created by the CCP), so
BDOS simply matches the filename from CCP ' s FCB with filenames
in the files' FCBs.

When BDOS finds the correct file, it supplies more information for
the File Control Block (FCB) that CCP created. Whenever the program
accesses that particular file, DBOS changes some of the information
in the File Control Block. When the program closes the file, BDOS
makes a final change and then copies the FCB in the computer memory
(along with the file 's updated information) onto the diskette , updating
both the file and the file's copy of the FCB.

The BDOS assumes that all files are the same, identified by filenames.
The CCP looks at the first word that is typed (after displaying the
system prompt) and assumes that it is either a built -in command or a
command (program) that resides on a diskette with a filename that is
the name of the command , including the "COM" extension (e.g.,
PIP.COM, LOAD.COM, etc.). If the first word is not a built-in
command, and CCP does not find a file of type COM with a name
matching the first word, CCP redisplays the word that was typed and
follows it with a question mark.

If a `COM' extension is put on a file that is not a proper program,
and the name of that file is then typed as a command , the CCP will
actually try to execute the file as if it were a program.

The CCP also looks at any associated filenames that might be typed
with the command , but it does not judge them or decide how to use
them . As soon as the command (or program) starts executing, the
command (program) itself decides what to do with the associated files.
For example , the ASM command is a transient program that only
works on files with the extension `ASM'. The LOAD command is
another transient program that expects to have a file of type `HEX' to
load. The LOAD command produces a `COM' file from a `HEX'
machine language program file.

190 THE CP/M HANDBOOK WITH MP/M

To communicate with the devices (peripherals), the system uses a
"message carrier ," the BIOS . The BIOS performs simple operations
like "read a character from the terminal keyboard" and "write a
character to the printer ." To the systems programmer and installer,
the BIOS is the part of the system that must be modified to suit the
hardware environment. Digital Research supplies a BIOS that will
work on an Intel MDS-800 with standard devices that connect to the
MDS-800 (corresponding to the Intellec MDS hardware environment
peripheral definitions). To operate this version of CP/M in another
hardware environment , the system programmer only has to alter the
BIOS module.

FDOS AND CCP OPERATIONS

General Organization

CP/M's memory map (after it is loaded into the computer's main
memory) is shown in Figure 5.6. The main entry point to FDOS is at

fbase:

cbase:

tbase:

boot:

FDOS (BIOS + BDOS)

CCP
(Console Command Processor)

TPA
(Transient Program Area)

Page Zero

1 OOH

0

0 1 2 3 4 5 6

Figure 5.6: Entry to Actual fbase Address (Size of Available TPA + CCP

Space). FDOS is a Jump to fbase.

INSIDE CP/M (AND MP/M) 191

0

4

5 10

ET FN FT EX

Field Positions information

15

RC

20 •••

DM

30 32333435

4
NR RR

ET 0 Entry type (assumed zero in CP/M 1.4, set to "drive code" in CP/M

2.2 and MP/M).

FN 1-8 Filename padded with blanks (ASCII characters).

FT 9-11 File type, sometimes called filename extension (also padded with

blanks).

EX 12 File extent, normally set to zero.

13-14 Reserved for system use.

RC 15 Record count, or current extent size (0 to 128 records).

DM 16-31 Disk allocation map, filled in and used by CP/M.

NR 32 Next record number to read or write (current record number in

CP/M version 2.2).

RR 33-35 Optional random record number (CP/M version 2.2 and MP/M only)

in the range 0-65535.

Figure 5.7: Field Positions information

BDOS Operations

BDOS can also be accessed by using the FDOS entry and passing a
function number and an information address (the entry point to FDOS

is boot + 0005H). For example, if a read on a disk file must be per-
formed, the program should send the function number for a disk read
(20 or 33), along with the address of the file control block for the file
you want to read. The BDOS would perform the function and then

194 THE CP/M HANDBOOK WITH MP/M

return with either a successful completion indicator, or an error indi-
cator (indicating that the read was not successful).

The BDOS operations and their function numbers are summarized
below. (Again, check with Digital Research for enhancements or changes.)

12. Lift Disk Head (version 1.4). The function lifts the head from
current disk. Return version number (version 2.2 and MP/M).

This returns the version number of your CP/M system to pro-
vide version-independent programming.

13. Reset disk system. This function initializes BDOS, resets read/
write state for all disks, selects drive A and sets the default DMA

address to boot + 0080H (used by programs to change disks
without requiring a tC from the terminal or a system restart).

14. Select disk. You designate (1 for A, 2 for B, 3 for C, etc.) a disk
drive as the current drive for subsequent file operations.

15. Open file. Send a file control block address, and BDOS will find
a matching file control block in the directory area of the disk,
and return with the proper directory code indicating that the
proper information was copied to the file control block. This
allows subsequent file access.

16. Close file. Send the address of a file control block, and BDOS
will record the new directory information in the file control
block on the disk (the reverse of an open file function, with the
same codes returned).

17. Search for file. Send the address of the file control block that
contains a filename, and BDOS will look for the first match of
that filename and return the address of the file control block on
disk that matches the one set up by CCP (or the program).

18. Search for next occurrence. Use this function after function 17
to find the next occurrence of a match for the filename, and
return with the address of the next file control block on disk.

R+R 19. Delete file. Send the address of the file control block that con-
tains a filename, and BDOS will delete that file from the disk.

20. Read sequentially. If the file has been opened or activated by a
make function, this function will read the next 128 bytes (record)
into memory at the current DMA address, and return an indicator
for a successful read, an end of file, or unwritten data during

random access.
21. Write sequentially. If the file has been opened or activated by a

make function, this function will write 128 bytes starting at the

INSIDE CP/M (AND MP/M) 195

current DMA address to the file named by the file control block.
This function will overwrite existing data in the file (if any).

22. Make file . Similar to the open file function , this function creates
a new file as well as opening it . Send the address of a file control
block with a new filename, and this function will create the file
and initialize its file control block (in main memory as well as
on disk) as an empty file. You must make sure that you are not
creating a duplicate of a file on the same disk , and rendering
them both inaccessible . Try using the delete function first on
the new filename.

23. Rename file . Send address of the file control block, and BDOS
will rename the filename area of the block and record it on disk.

24. Return log-in vector. This function determines which disk
drives are "on-line."

25. Return current disk (version 2.2 and MP/M only). This function
returns a number corresponding to the letter (A, B, C, etc.) of
the disk drive that is currently selected.

26. Set DMA address. This function sets the Direct Memory Address
(address where the file pointer stopped after a read or write
operation) to another value to find data records elsewhere in
memory. A cold start, warm start, or a disk reset will set the
DMA to boot + 0080H.

27. Get address of allocation vector. The system maintains an alloca-
tion vector in the main memory for each on-line drive. This
function returns the address of the vector for the current drive.
Various programs (like STAT) use this vector to determine the
amount of remaining storage space.

28. Write-protect disk. This function provides temporary write
protection. Any attempt to write to the disk (without an inter-
vening cold or warm start) will generate an error message.

29. Get read/only vector. This function returns a vector that indi-
cates which drives are write protected; i.e., that have the read/
only bit set.

30. Set file attributes. This function allows you to set or clear indi-
cators attached to files that provide read/only and system attri-
butes.

31. Get disk parameter block address. This function returns the
BIOS disk parameter block address, and is useful for computing
space and changing values of disk parameters when the disk
environment changes.

196 THE CP/M HANDBOOK WITH MP/M

32. Get or set user code. You can use this function to find out or
change the user code currently active (user areas are in version
2.2 and MP/M only).

33. Read randomly. This function uses the RR field of the file control
block to select a record number and read the record. It returns
with the DMA pointing to the desired record, and the record
number is not advanced as with sequential read operations.

34. Write randomly. This function is initiated in the same manner
as a random read operation, except that it writes the data to the
disk from the current DMA. If the file's space has not yet been
allocated, the operation allocates before writing. The record
number is not advanced.

35. Compute file size. Send this function a file control block address,
and it returns the record address of the "logical record" fol-
lowing the end of file (virtual file size). You can append data to
an existing file by using this information to set the random
record position before performing a series of random write
operations. The virtual size corresponds to the physical size if
the file was written sequentially; otherwise, the file may have
unallocated holes as a result of random write operations.

36. Set random record position. This function returns the random
record position after a series of sequential read or write opera-
tions. It is useful for switching from sequential to random file
operations, or for initial sequential scanning of the file before
random read or write operations.

INSTALLING AND ALTERING CP/M

CP/M is always tailored to a specific input/output (and memory)
configuration. Digital Research distributes a form of CP/M that works
instantly on Intel's MDS-800 microcomputer development system.
Other hardware and software vendors supply versions of CP/M that
work on other hardware systems. Most likely, you will be buying a
version of CP/M that automatically works without alterations. How-
ever, if you have a CP/M version, and you wish to tailor it to a new
hardware environment because of new input/output devices you will
need to "patch" the BIOS portion of CP/M; if you have MP/M, you
will need to "patch" the BIOS and the XIOS portions. Patching the
BIOS means inserting the new input/output routines required by your

INSIDE CP/M (AND MP/M) 197

specific devices. This is not a difficult task, but it is device- and in-
stallation-dependent. For this reason, specific instructions cannot be

presented here. Refer to the applicable version of Digital Research's

CP/MAlteration Guide.
If you are bringing up a new CP/M version from scratch, the problem

is more complex . If your system already has the rudimentary elements
for program development and execution, you can write your own

routines (called GETSYS and PUTSYS) to read the "system" from a
diskette into the computer's memory and write back a patched version
of the system onto a new diskette to be used as the System Diskette.
Otherwise, you must use another system to generate the new diskette

to be used with your system.
If you have a version of CP/M up and running, you can easily

write assembly language programs to perform special tasks; you could

also make use of SYSGEN.COM and MOVCPM.COM to help alter
CP/M so that you don't have to write your own GETSYS and PUTSYS

programs . However, your version of SYSGEN.COM might not work
with your type of disk or diskette (minidiskettes, hard disks, and others).
You might have to alter CP/M first before you can use SYSGEN.COM.

Digital Research provides minimal versions of GETSYS and PUTSYS
programs in the documentation that they provide (CP/M Alteration

Guide or MP/M User's Guide). To begin, you must write a GETSYS
program to read the first two tracks of the supplied system diskette
(the first two tracks' files are not displayed by DIR, but consist of the
system itself). You can find the BIOS portion of the system and change
it (called "patching" the program). You can save the altered system
on diskette by writing a PUTSYS program. Finally, you can write a
version of GETSYS, a "bootstrap" program, and place it on track 0,
sector 1 using your PUTSYS program. After testing it, you should
have a properly working system that automatically starts when you

"cold start" your computer.
If your are using a CP/M system to alter a CP/M system for another

hardware environment, and the disk media is compatible, then you
can use shortcuts to create your new system diskette: MOVCPM
(MOVCPM.COM), and SYSGEN (SYSGEN.COM). This is called a
"second level system regeneration" in Digital Research's documentation.

You can combine a memory reconfiguration (MOVCPM) and a

diskette initialization (PUTSYS) by using MOVCPM instead of GETSYS
to read in the existing system, and SYSGEN instead of PUTSYS to
place the altered version on your new system diskette.

MOVCPM is the transient command MOVCPM.COM, and you

198 THE CP/M HANDBOOK WITH MP/M

have to supply arguments:

MOVCPM bb *

where bb is the number of kilobytes (e.g., 32k , 64k, 20k) for the new
memory image of the system. You supply an asterisk (*) to tell
MOVCPM to leave this memory image in memory (the TPA). You
could also supply an asterisk to replace bb, and MOVCPM will
calculate the largest amount of memory it can dedicate to the new
system . The MOVCPM command is described in more detail in the
next part of this section.

Here is an example of a MOVCPM operation:

A > MOVCPM 32 * 1

CONSTRUCTING 32K CP/M VERS x.x

READY FOR "SYSGEN" OR

"SAVE 34 CPM32.COM"

A >

As the display suggests , the new 32K system is in the TPA , ready for
your next operation, which should either be a SYSGEN or a SAVE.
Since you want to alter the BIOS portion of the system , you will also
want to SAVE a version of it (calling it `CPM32 . COM' for a 32K system,
if you wish). Once it is SAVEd, you can load it into memory again
using DDT (CP/M's debugger program), and alter the BIOS portion.

If you plan to make major alterations (or alterations at another time),
it would be easier to create your own BIOS, since you also have to
create your own bootstrap program (you can call them 'CBIOS' and
` BOOT ' if you wish). You would use the ED program (CP/M's editor
program) to create CBIOS .ASM and BOOT .ASM, and use the ASM
program (CP/M's assembler) or another assembler to create CBIOS.HEX
and BOOT . HEX, which could be loaded by using LOAD to create
CBIOS . COM and BOOT . COM-actual programs that can be tested
before you merge them with your new system.

When you have the new CPMbb.COM (where bb is the memory size
you used with MOVCPM) system in memory using DDT, you can
merge CBIOS . COM and BOOT.COM with it, or alter these portions
while testing it, and finally use SYSGEN to put the altered system

INSIDE CP/M (AND MP/M) 199

reset or 4C), the command line you inserted is automatically executed.
The values in the display are hexadecimal. Each ASCII character

has a hexadecimal value-the `C' of `COPYRIGHT' has the value
43H ('H' for hexadecimal), the `O' of `COPYRIGHT' has the value
4FH, and a blank has the value 20H (the command buffer starts out
with many blanks). These values can be found in the ASCII chart.

Notice that the 00 value for the "current length of command buffer,"
after the 7F value for "maximum length of command buffer," on the
line of address 0980. This 00 value tells CP/M that there is, at present,
no command in the command buffer (at a cold or warm start). The
system therefore displays the `A >' system prompt, and waits for the

user to type a command; the command line that the user types is stored
(following the "current length" value) in the command buffer, over-
writing whatever was there before (at cold start, the copyright notice
occupies the buffer). This is a normal CP/M operation.

To turn CP/M into a "turn-key" system, you would want to induce

an abnormal condition: if you changed the "current length of command
buffer" value to a non-zero number, the system, after a cold or warm
start, would think there is a command in the buffer already, and it

would execute the command. Following completion or interruption
(or warm start or cold start), the system would return again to this
value, and think that there is already a command in the buffer. In short,
the system would never get around to displaying the `A >' system

prompt!

You would, of course, have to provide a command line for the
command buffer, overwriting the copyright notice (you could also
move the copyright notice to the end of the command buffer). You

can use up to and including location OA07H, but you absolutely cannot

modify locations above it . Location OA08H contains the pointer to the

beginning of the command buffer, which you will need if you write a

menu program in assembly language.
To insert the command line , type in DDT's `S' command, (as de-

scribed in the documentation for DDT supplied by Digital Research),

using hexadecimal values for the ASCII characters of the command
line. This command line should end with the value 00, and you should
count all of the characters (including blanks) of your command line up

to but not including the final 00, and put this character count into
the location for the "current length of the command buffer," to tell
CP/M how long your command line is.

An easy way to implement a menu system is to use BASIC. Most
BASICs have the CHAIN program statement, so that one BASIC

204 THE CP/M HANDBOOK WITH MP/M

program can chain to another, and the other can chain back to
the menu program. This menu program can be written in BASIC, and
the BASIC language interpreter would take care of the command
buffer to execute BASIC programs (i.e., you would not need to use
the pointer to the beginning of the command buffer in location OAO8H).
CBASIC2 (Software Systems) or Microsoft BASIC (MBASIC.COM,
by Microsoft Consumer Products) could be used, since both of them
allow you to execute a BASIC program as part of the CP/M command
line in order to execute the BASIC.

For example, Microsoft BASIC is supplied as MBASIC.COM, a
command you can execute by itself to "bring up" Microsoft BASIC
(execute the BASIC interpreter) or you can also execute Microsoft
BASIC with an argument that is the name of a BASIC program, as in
this example:

A > MBASIC PROG J

In this example, MBASIC is the BASIC interpreter program which in
turn executes the BASIC program PROG.BAS ('.BAS' extension is
expected on filenames for Microsoft BASIC programs).

If you write a BASIC program MENU.BAS, you could use it in
the following command line:

MBASIC MENU

You could insert this command line into the command buffer. The
current length of the command buffer would be 11, so you would put
the value OB (hexadecimal) in the location for the "current length of
the command buffer," and you would then insert the command line
"MBASIC MENU" into the command buffer as shown in Figure 5.9.

Current length of command
buffer, changed to accomodate
newly inserted command line.

1
0980 C3 55 6C C3 51 6C 7F OB 4D 42 41 53 49 43 20 4D U1.Q1..MBASIC M

0990 45 4E 55 1 00 20 20 20 20 43 4F 50 59 52 49 47 48 ENU. COPYRIGHT

Ending null value (end of command line).

Actual inserted command line `MBASIC MENU. "

Figure 5 .9: Memory Shows the Line Inserted

INSIDE CP/M (AND MP/M) 205

When you finish applying the "patch" above, you should execute
DDT's GO command to terminate DDT. Without doing anything to
destroy the contents of the TPA, use the SAVE command to save the
new version of your system:

A > SAVE 34 AUTOCPM.COM 1

(Call your new version something like `AUTOCPM.COM' to distinguish
it from other versions of your system.)

If you are using CP/M version 1.4, you should first do the following
SYSGEN operation to put the newly modified system on the first two
tracks of your new system diskette , then do the above SAVE operation
(because version 1.4's SAVE command destroys the contents of the
TPA). If you' re using version 2.2 of CP/M, you can safely use the
SAVE command first (to save a memory image of your new system),
and then use SYSGEN to put the new system on the first two tracks of
your new system diskette:

A > SYSGEN I

SOURCE DRIVE NAME (OR RETURN TO SKIP),

(Hit RETURN to skip, since the newly
modified system is already in memory.)

DESTINATION DRIVE NAME (OR RETURN TO REBOOT) B

(This assumes your new system diskette is
in drive B.)

DESTINATION IN DRIVE B, THEN TYPE RETURN,

FUNCTION COMPLETE

DESTINATION DRIVE NAME (OR RETURN TO REBOOT)

(Hit RETURN to terminate the SYSGEN
program.)

A

Now all you need to do is copy the appropriate files (CP/M command
files, MBASIC.COM and MENU.BAS) to the new system diskette.
Upon cold start, CP/M will execute MBASIC, and the MENU.BAA,
instead of supplying the usual system prompt. Your MENU.BAA must

206 THE CP/M HANDBOOK WITH MP/M

be capable of providing access (via CHAIN or SWAP statements) to
other BASIC programs.

If you wanted to write your menu program in assembly language,
the program would have to be smart enough to reconstruct another
command line in the command buffer to branch to other programs.
This program would use the "pointer to the beginning of the command
buffer" in location OA08H to tell the system to go back and read (and
execute) the reconstructed command line.

MP/M

Installing and Altering MP/M

To install an MP/M multi-user system, you need a CP/M system,
because the MP/M loader (MPMLDR.COM) needs to have a version
of CP/M's BIOS included (LDRBIOS.COM). MP/M can be executed
("brought up") from CP/M by executing MPMLDR.COM, which
loads the MP/M system (MPM.SYS) into memory from the diskette
(similar to SYSGEN.COM, which loads a CP/M system into memory).
From CP/M, you must first generate your MP/M system by using the
program GENSYS.COM, which is provided with MP/M, and will run
in CP/M.

The GENSYS program asks several questions, and then uses the in-
formation you supply to build MPM.SYS. The MPMLDR program
then loads MPM.SYS into memory, and relocates it automatically.

To answer all of the questions for GENSYS, you need to know what
kind of system you want, whether you want "banked memory" or
not, and what "resident system processes" you desire ("resident system
processes" are described in the next section). Here is a sample run of
GENSYS:

A > GENSYS 1

MP/M 1.0 SYSTEM GENERATION

TOP PAGE OF MEMORY = 0 f

NUMBER OF CONSOLES = 2 J

BREAKPOINT RST # = 51

ALLOCATE USER STACKS FOR SYSTEM CALLS (Y/N) ?Y

MEMORY SEGMENT BASES, (FF TERMINATES LIST)

INSIDE CP/M (AND MP/M) 207

00,01

00, 1 1
00,21
FF J

Select Resident System Processes : (Y/N) Y

TIME ?Y f

SCHED ?Y 1

ATTACH ?Y 1

SPOOL ?Y J

MPMSTAT ?Y J

A

The answers above are described here:

Top page of memory: You enter the hexadecimal address of the top
page of your system 's RAM memory . If you enter a zero, the MP/M
loader determines the size of memory at load time by finding the top
page of RAM memory.

Number of consoles: You enter the number of consoles to be hooked
up to your system ; each console takes up 256 bytes of memory. MP/M
version 1.0 supports up to 16 consoles.

Breakpoint RST #: You enter the breakpoint restart number to be
used by DDT or SID (debugger programs). Restart zero is not allowed;
neither are the restarts used by the MP/M system. Consult the MP/M
documentation supplied by Digital Research.

Allocate user stacks for system calls: Answer `Y' for yes if you intend
to use CP/M `.COM' files as commands in your MP/M system. MP/M
requires more stack space than CP/M.

Memory segment bases: You can specify one to eight user memory
segments with the same address space but with different bank numbers,
as described in the MP/M documentation. The first memory location
you specify should be your first actual RAM location (if you have

208 THE CP/M HANDBOOK WITH MP/M

ROM starting at OOOOH). The bank number follows the location,
separated by a comma. This list is terminated with 'FF'.

Select resident system processes: Answer `Y' for yes to each program
that you want to be "resident" instead of "relocatable" or "transient."
Resident processes are programs that reside within the operating system,
and are not displayed in a directory display (much like CP/M's built-
in commands).

If this routine looks complicated, that's because it is! MP/M is a
brand new concept for microcomputers-shared multi-user systems
have not yet proliferated in the low-end microcomputer marketplace.
Typical of "advanced ideas," this one is far too complicated for
normal microcomputer operations. Obviously, this generation process
will become easier to perform in subsequent releases of MP/M. (Most
of this information can be found in an easily updatable form in Digital
Research's User's Guide to MP/M.)

Once you have generated MPM.SYS, you can use MPMLDR.COM
to load it into memory and execute it. MPMLDR.COM requires no
answers-simply execute it as a command.

MP/M is designed to run on an Intel MDS-800 microcomputer
development system, but it has a portion called XIOS (Extended BIOS)
that you can alter for other hardware environments. In addition to
rewriting the XIOS portion, you must also customize the MPMLDR.COM
program to load MPM.SYS and execute it. Note that MPMLDR.COM
uses the standard CP/M BIOS (called LDRBIOS) to relocate and
execute the MP/M system; therefore, at the least you need a version of
CP/M's BIOS (you can write your own, or modify an existing one).
Using your modified BIOS (LDRBIOS), patch the BIOS portion of
MPMLDR.COM and place it back on diskette using SYSGEN.COM
(if you can't use SYSGEN.COM, you need to write GETSYS and
PUTSYS programs, as described in MP/M's documentation, and in
the previous section of this chapter). To perform this patch, read into
memory MPMLDR.COM using DDT or SID (debugger programs),
and either perform the change manually , or merge your LDRBIOS.HEX
with it. When you are finished, SAVE the contents as MPMLDR.COM,
and execute MPMLDR.COM to initiate MP/M from a running CP/M.

To customize your XIOS portion of MP/M, follow the detailed in-
structions in the MP/M documentation provided by Digital Research.
Use the GENMOD program to produce the XIOS.SPR (system page
relocatable) file from two concatenated HEX files.

INSIDE CP/M (AND MP/M) 209

MP/M Operation

MP/M is comprised of several components: The XIOS (BIOS and
extended IOS) to interface with the hardware environment (which can
be altered), the BDOS and XDOS (Basic and extended disk operation)
to perform file operations, and the CLI/TMP (Command Line Inter-
preter and Terminal Message Process) to handle console input/output.

CP/M is a "sequential" system, with only one program running at
any one time. MP/M, however, has to accomodate many programs
running "at the same time," and sharing the same resources: the CPU
(computer), the disk media, consoles, and line printers. MP/M is a
"priority driven" system, which means that the process (running pro-
gram) with the highest priority gets the CPU. A process holds its re-
source until it is finished with it, it issues a system call, it is interrupted,
or the real-time clock ticks once (optional). The ensuing contest for re-
sources is called "dispatching. "

The "dispatcher" looks at the process's "descriptor" to determine
its priority and to decide whether it should run ahead of other pro-
cesses. The dispatcher also uses the process descriptor to store temporary
information about the process, and the state it was in when it was
interrupted.

When all processes have equal priority, the dispatcher executes
them in a "first in-first out" order. Queues are used to synchronize
processes by having one process send a message at a certain time during
its run, while another waits at the queue for the message. The waiting
process is suspended until the message arrives.

A queue is a waiting list, organized as a special file that can be opened
and closed and fed information sequentially. A queue can be used to
temporarily receive information to transfer to another program that
writes the information onto the disk. Queues are also used to spool
files to the line printer, and to provide exclusive use of a resource by a
process. For example, if one process set up a queue that only held in-
formation when the line printer was not busy, and another process
had to first receive information from the queue before accessing the
line printer, then that mechanism would provide exclusive use of a
shared resource. The second process would wait until it received the
message that the line printer was free.

MP/M provides another way to synchronize processes by employing
flags set by one process and examined by another process. Flags pro-
vide a method of synchronization and process interruption that is
independent of additional hardware interrupt devices and software
interrupt mechanisms.

210 THE CP/M HANDBOOK WITH MP/M

As an option , a real -time clock (that can be reset) may be used to
provide accurate time of day measurement , and system timing in order
to schedule processes , or for the execution of disk programs . It also
provides the ability to delay the execution of a process.

There are no "built-in" commands for MP /M; all "commands"
are either transient `. COM' programs , page relocatable `.PRL' pro-
grams, or resident system processes created from ` . RSP' programs at
system generation (GENSYS execution). Transient programs require
use of the "absolute TPA" area of memory , and they require extra
stack space; most programs should be made "relocatable " so that
they can occupy virtually any space available in memory , and still
execute properly. Most relocatable programs employ macros that are
many instructions rolled into one, and you need MAC (Macro-
Assembler program sold separately by Digital Research) to assemble
programs . The program GENMOD , supplied with MP/M, converts
two concatenated `. HEX' files into a page relocatable file with a
`.PRL' extension . This `.PRL ' program executes properly if you use
ORG statements correctly , as described in the MP/M User's Guide
from Digital Research.

GENMOD accepts a file that contains two concatenated `.HEX'
files offset from each other by 100 hexadecimal bytes . The format of
the GENMOD command is:

GENMOD file. hex file . prl $bbbb

The argument file.hex must be a filename including the `.HEX' ex-
tension of a file with two concatenated `.HEX' files offset by 100H
bytes. The argument file.prl must be a filename including the `.PRL'
extension for the new page relocatable program . The optional $bbbb
argument provides additional memory beyond the explicit code space
allotted, in order to provide extra space for buffers . If your program
needs the extra memory, supply a dollar ($) sign followed by four
hexadecimal digits. Here is an example:

1A >GENMOD B: FINAL . HEX PERFORM . PRL $1000 1

This command will convert FINAL.HEX on drive B to PERFORM.PRL
on the current drive, and allot an extra 1000H bytes of memory to the
program.

You can also create your own resident system process using GENMOD

INSIDE CP/M (AND MP/M) 211

by substituting a file . rsp argument for file . prl. A resident system pro-
cess starts out as a ".RSP " program; when you generate MP/M using
GENSYS , you have the option of incorporating all '.RSP' files within
the system as resident system processes . The `.RSP' files supplied in-
clude MPMSTAT , SPOOL, system time (TOD) and scheduler (SCHED).
You can create your own `. RSP' file, provided that you make it page
relocatable , the first two bytes of the file for the address of BDOS/
XDOS are reserved , and your process descriptor is built according to
the instructions provided with MP/M's documentation.

MP/M handles each console by employing a process called the
TMP (Terminal Message Process). When a command line is typed,
the TMP sends it to the CLI (Command Line Interpreter) where it is
parsed and scrutinized . The CLI is actually a more advanced CCP
(Console Command Processor) used by CP/M. The CLI takes the
first word of the command line and tries to open a queue by that name,
assuming first that it is simply a request to put a message into a queue
(since the CLI also handles that operation). If there is no queue by
that name , CLI first looks for a ` . PRL' file by that name ; if there is a
queue by that name, the rest of the command line is copied into the
queue as a message . If the CLI finds a `.PRL' file by that name, it
makes a request for relocatable memory in which to load and run the
program; then , it loads and runs the program . If the CLI does not find
a `.PRL ' file, it looks for a `. COM' file ; if it finds a `.COM ' file, it
makes a request for absolute TPA memory , and loads and executes
the program. If the program contains file specifications or is followed
by filenames in the command line, the CLI also creates file control
blocks (as the CCP does in CP/M systems).

At the console , you can "detach" a running program (i.e., the pro-
gram 's output does not appear at the terminal, and the terminal is free)
in order to execute other programs by using t D. When you hit tD
again, the next process waiting for the console (the process with higher
priority) will return . You can also use the ATTACH program to attach
a console to a specific program . Here is an example:

1 A > ATTACH PROG1 I

(PROG1 takes over console)

A program can only be attached to the console it was detached from.
You can use the MPMSTAT resident process (if generated with your
system), or the MPMSTAT . RSP program (if renamed to MPMSTAT.PRL)

212 THE CP/M HANDBOOK WITH MP/M

to provide a display of processes in the system:

1 A > MPMSTAT d

* * * * * MPM 1.0 STATUS DISPLAY

Ready Process(es):
MPMSTAT cli Idle

(The ready processes are those that are ready to run and are waiting
for CPU time. The first one has the higher priority, and is running at
the moment.)

Process (es) DQing:
[Sched] Sched
[ATTACH] ATTACH
[SPOOL] Spool

(These processes are waiting for messages from the queues that are in
brackets . They are arranged from higher to lower priority.)

Process (es) NQing:

(Usually similar to the above display, this display shows that there are
no processes at this time writing to queues.)

Delayed Process(es):

(There are no processes delayed at this time. A delayed process is one
that is waiting for a specified amount of clock ticks on the system time
unit.)

Polling Process(es):
PIP

(The PIP process is polling the console device.)

Swapped Process(es):

(Swapping is not implemented in version 1.0 of MP/M.)

INSIDE CP/M (AND MP/M) 213

Process(es) Flag Waiting:
01 - Tick
02 - Clock

(These are processes that set and alter flags to syncronize other pro-
cesses.)

Flag(s) Set:
03

(The "one minute interval" flag is set.)

Queue(s):
tod SCHED ATTACH STOPSPLR SPOOL MPMSTAT

Cliq Parseq ListMQ DiskMQ

(These are all the queues in the system . Queues in all upper case letters
can be sent messages from the CLI, or from the console via the CLI.
For example , the SPOOL queue can receive filenames by typing
`SPOOL', followed by filenames at the console.)

Process(es) Attached to Consoles:
[0] - MPMSTAT
[1] - PIP

(The processes attached to consoles are listed by console number and
process name.)

Process (es) Waiting for Consoles:
[0] - TMPO DIR
[1] - TMP1

(These processes are waiting for the consoles they were detached from;
for example , TMPO is waiting for console 0, and DIR is waiting for
TMPO to finish with console 0. Since TMPO is the console message
process, DIR will wait until a }D (or ATTACH) is executed).)

214 THE CP/M HANDBOOK WITH MP/M

Memory Allocation:
Base = OOOOH Size = 4000H Allocated to PIP 1
Base = 4000H Size = 2000H * Free *
Base = 6000H Size = I100H Allocated to DIR 0

(This display shows the base, size, and owner of memory segments,
along with the owner's originating console number in brackets. Un-

allocated segments are free to be used.)

SUMMARY

The internal operations of CP/M and MP/M have been explained

in this chapter . The principles of these operations are not complex,
and should be understood in order to modify CP/M.

We have now learned all of the resources available with CP/M and
MP/M. However, this does not automatically mean that the user has
sufficient training to successfully and effectively use the computer:
practice is required.

As you practice , you will appreciate the value of the practical re-
commendations presented in the following chapter.

INSIDE CP/M (AND MP/M) 215

216 THE CP/M HANDBOOK WITH MP/M

T
REFERENCE GUIDE TO
CP/M AND MP/M COMMANDS
AND PROGRAMS

INTRODUCTION

This chapter is a quick reference guide to CP/M and MP/M com-
mands and utility programs (introduced in Chapters 1 through 4).
This guide is organized so that the user can look up the key-word of a
command or program. These key-words are presented in alphabetical
order.

We will now describe the format used in this chapter. The following
is a sample of a descriptor that appears next to every command:

• CP/M version 1.4
CP/M version 2.2

o MP/M version 1.0

Looking at the above sample, the black dot next to CP/M version 1.4
tells you that the command or program applies to that particular
version of CP/M. The open dot appearing beside CP/M version 2.2
and MP/M version 1.0 tells you the example does not apply to them.
Many commands and programs apply to all three systems.

After the purpose of each command or program is described, its
nature is indicated in parenthesis: i.e., built-in command, `.COM' file,
`.PRL' file, or resident process (MP/M).

Next, a concise format is shown that demonstrates the possible
arguments used when the command or program is executed. This type-
style indicates that an argument is required (e.g., filename), while this
typestyle indicates that an argument is optional (e.g., filename). The
braces } } indicate a choice, where at least one of the arguments is
required (unless one of the arguments is optional within the braces).

In some cases , one part of an argument is optional, while another
part is required (e.g., d:filename (where d : is optional and filename

217

is required)). In any case, read the descriptions of the argument below
the formats.

Some general assumptions are made throughout this guide. For
example, the assumption is made that a filename argument, whether
optional or required , can have within it an optional drive letter (e.g.,
B:FILE) that specifies an alternate disk drive from the current one.
This is always the case unless the argument is defined to exclude drive
specifiers . In cases where drive specifiers are shown as part of the argu-
ment, you should read the instructions for that particular argument.

Another general assumption is that all ' . COM' files can be executed
if they are on a disk (on the current or alternate disk drive), as well as
all `.PRL' files. For example, to execute SAMPLE.COM, you would
type `SAMPLE 1 '. If SAMPLE.COM existed on drive B and you
were in drive A, then you could type 'B: SAMPLE 1 'to execute it.

Finally, everything that you would type into the system is underlined.
The 1 symbol is for the Carriage Return (RETURN or CR key), and
the } symbol , combined with a letter such as C (i.e ., } C), stands for
the Control (CTRL) key used simultaneously with the letter key.

218 THE CP/M HANDBOOK WITH MP/M

CP/M version 1.4
CP/M version 2.2

• MP/M version 1.0

Abort a running program

(ABORT . COM or ABORT.PRL)

FORMATS:

1. ABORT programname
2. ABORT programname consolenumber

ARGUMENTS:
programname The name of the running program to be aborted.

consolenumber Number of the console from which the program has
been initiated. Must be specified if that console is
another one than the console at which the ABORT is
specified.

DESCRIPTION:

This command halts execution of the specified program . It should
be used with care since any user may abort any program started at any
console.

HOW TO USE IT:

If the program was started from your console, simply specify
ABORT followed by the program name . If the program was started
from another console , use the second format and specify the console
number.

REFERENCE GUIDE 219

EXAMPLES:
OA> ABORT COMPUTE)

(COMPUTE was started at this console.)

2A > ABORT TEST 11

(TEST was started at console 1.)

220 THE CP/M HANDBOOK WITH MP/M

• CP/M version 1.4
• CP/M version 2.2
• MP/M version 1.0

Assemble a file

(ASM.COM) supplied with CP/M (or MP/M)

FORMATS:

1. ASM filename
2. ASMfilename.shp

ARGUMENTS:
filename The name of an `.ASM' source file (text file) that con-

tains assembly language instructions as ASCII text.
ASM looks for `filename.ASM'; the `.ASM' extension
does not have to be specified in filename.

.shp The optional parameters for ASM, that consist of three
letters preceded by a period. The s must be the letter of
the drive (A, B, . . ., P) containing the source `.ASM'
file, if not on the current drive. The h must be either the
letter of the drive (A, B, . . ., P) to receive the `.HEX' file
created by ASM, or `Z' to tell ASM to skip the function
of creating the `.HEX' file (described below). The p
must be either the letter of the drive (A, B, . . ., P) to
receive the `.PRN' file created by ASM, or `X' to send
the `.PRN' file to the terminal display, or 'Z' to tell
ASM to skip the function of creating the `.PRN' file
(described below).

DESCRIPTION:

The assembler program (ASM.COM) turns an assembly language
source file (written in 8080 or Z-80 code) into a machine code file of

REFERENCE GUIDE 221

type `.HEX' that can subsequently be LOADed (using the LOAD
command) into the system as a transient command (executable program).
ASM also creates a listing file with a `.PRN' extension that contains
the assembly language source lines with error flags and hexadecimal
notation (machine code) generated by ASM.

HOW TO USE IT:

Use format 1 if the `.ASM' source file is on the current disk and you
want to create the `.HEX' and `.PRN' files also on the current disk
drive. Otherwise, you must use format 2, and explicitly specify s as the
drive for the source file, h as the drive to receive the `.HEX' file, and p
as the drive to receive the `.PRN' file. If you want ASM to assemble
the file and only create the `.PRN' file (i.e., skip the `.HEX' file), then
specify a `Z' for h. If you want ASM to only create the'.HEX' file
when it assembles the source file, then specify a `Z' for p (to skip the
`.PRN' file). If you want ASM to send the `.PRN' file to the terminal
display only (and not save a copy on disk), then specify an `X' for p.

In both format cases, ASM translates ("assembles") the assembly
language source lines into Intel hexadecimal notation to denote machine
code (binary code). If ASM finds errors in the source file, it displays
the line in error and an error code.

EXAMPLES:

A > ASM PROG I

(Execute ASM on the file PROG. ASMin the current drive.)

A> ASMDOTHIS.ABZJ

(Execute ASM on the file DOTHIS. ASM in drive A; put the new
file DOTHIS.HEX on drive B, and skip the creation of DO THIS. RRN.)

222 THE CP/M HANDBOOK WITH MP/M

CP/M version 1.4
CP/M version 2.2

• MP/M version 1.0

Attach a console to a detached program

(Resident process or ATTACH.PRL)

FORMAT:

ATTACH progname

ARGUMENT:

progname The filename for a program that was detached from the
console currently executing ATTACH.

DESCRIPTION:

The ATTACH program attaches a detached program to the console.
The detached program , however, must have been detached from the

same console (terminal). You can detach a program from a console by
hitting + D while the program is running . A process that is waiting for
the console automatically attaches itself when you detach a process.

HOW TO USE IT:

ATTACH can be executed as a command along with the progname

argument, if you have ATTACH as a resident system process generated

with the MP/M system , or if you have ATTACH.PRL accessible on a

disk.

EXAMPLE:

1 A> ATTACH PROGI. PRL 1

(PROGI . PRL takes over console.)

REFERENCE GUIDE 223

EXAMPLE:

A> DDT PIP.COM J

NOTE: For additional information , refer to the CP/M Dynamic De-
bugging Tool (DDT) User's Guide supplied by Digital Research.

226 THE CP/M HANDBOOK WITH MP/M

• CP/M version 1.4
• CP/M version 2.2
• MP/M version 1.0

Directory-Display a list of filenames in the current
disk drive's directory

(Built-in command in CP/M, DIR . COM or DIR .PRL in MP/M)

FORMAT:

DIR

filename

filematch

ARGUMENTS:

filename Optional argument to tell DIR to find. only the file
named by filename.

filematch Optional replacement for filename to tell DIR to find
several files and list their names. Both filename and

filematch can have drive specifiers.

DESCRIPTION:

If a filename or filematch is not specified, DIR assumes that what
is wanted is a list of all of the filenames in the current drive's directory
(only files with the $DIR attribute, not files with the $SYS attribute).
Note, however, that DIR only displays the files in the current user
area, in CP/M version 2.2 and MP/M.

If a filename is supplied, DIR displays only that file, if it is in the
current disk drive, and in the current user area . If a drive specifier is
supplied (i.e., A:, B:, C:, . . ., P:), DIR looks in that specified drive,
in the current user area.

REFERENCE GUIDE 227

If a filename match (filematch) is supplied instead of a filename,
DIR looks for all files that match the filematch in the current disk
drive (or drive specified), and in the current user area.

HOW TO USE IT:

In CP/M version 1.4 and version 2.2, DIR is a built-in command
(i.e., part of the operating system), and can be executed from any disk
drive and user area. In MP/M, DIR can either be supplied as DIR.COM
or DIR.PRL. DIR.COM or DIR.PRL must exist in the current drive
unless you specify another drive as a prefix to DIR. It must also be in
the current user area in order to be executed in an MP/M system.
NOTE: DIR's display in version 1.4 is vertical only, while version 2.2
(and MP/M) displays have horizontal rows and vertical columns.

EXAMPLES:

A> DIR 1

ASM.COM DUMP.COM ED.COM PI P.COM
LOAD.COM PROG.HEX BASIC.COM
STAT.COM SAMPLE. TXT FILE. TXT
TONE. TXT SYSGEN.COM 32CPM.COM
GAME1.INT GAME1.BAS GAME2.INT
GAME2. BAS SOU RCE. BAS TEST. SYS

(CP/M version 2.2 display of all files with the $DIR attribute in
drive A, user 0.)

B> DIR *.TXT,

SAMPLE. TXT
PROG. TXT
POEM. TXT
NAME. TXT
BOOK. TXT
ONE. TXT
LETTER. TXT
FILE. TXT

(CP/M version 1.4 display of all files in drive B with . TXT' ex-
tensions.)

228 THE CP/M HANDBOOK WITH MP/M

CP/M version 1.4
CP/M version 2.2

• MP/M version 1.0

Reset (change) disk in a multi-user system

(DSKRESET .COM or DSKRESET.PRL)

FORMAT:

DSKRESET

DESCRIPTION:

When DSKRESET is executed , it sends a message to the other
terminals hooked up to the system: "Confirm reset disk system (Y/N)?"
If any terminal responds with an "N" for no, then the disk reset
request is denied . If all terminals respond with a "Y" for yes, then the
user may change the disk (diskette). It is important that the user indi-
cate to other users that he or she is going to change a disk or diskette,
since other users might still be in the process of updating or accessing
files on the disk.

EXAMPLE:

OAS DSKRESET1

Confirm reset disk system (Y/N) ? Y

(This message appears at every terminal hooked up to the system.)

REFERENCE GUIDE 229

• CP/M version 1.4
• CP/M version 2.2
• MP/M version 1.0

Dump file to terminal
Display the contents of a disk file in hexadecimal form

FORMAT:

DUMP filename

ARGUMENTS:

filename The name (including extension) of any disk file.

DESCRIPTION:

DUMP displays in hexadecimal notation the contents of any disk
file on the terminal screen, listing sixteen bytes at a time, with each
line's absolute byte address on the left.

HOW TO USE IT:

Execute the DUMP program (DUMP.COM) as a command, supply-
ing a filename with its extension . If DUMP . COM is not on the current
drive, specify a drive letter to precede the command.

EXAMPLES:

A > DUMP SCRATCH. HEX,

A> DUMP B:NONAME.COM J

230 THE CP/M HANDBOOK WITH MP/M

• CP/M version 1.4
• CP/M version 2.2
• MP/M version 1.0

Edit a file

(ED.COM or ED.PRL)

FORMAT:

ED filename

ARGUMENT:

filename Name of a file to be edited; must be a text file (or other
type of ASCII file). You must also supply the extension.

DESCRIPTION:

The ED program creates an edit buffer and allows the user to modify
text in this buffer. First, ED deletes any '.BAK' file that matches file-
name's primary name (e.g., SAMPLE.BAK for SAMPLE.TXT).
Then, it allows the user to append text to the buffer to modify the text.
Text can be output to a temporary file while other text is modified in
the buffer. Text from "library" files can be inserted. When ED is
terminated with the E command, ED updates the source file and creates
a backup file of the original source file.

HOW TO USE IT:

You must have ED.COM or ED.PRL on an accessible disk (diskette).
Chapter 4 describes how to use ED. There is an additional summary of
ED commands in Appendices D and E.

REFERENCE GUIDE 231

ERA

• CP/M version 1.4
• CP/M version 2.2
• MP/M version 1.0

Erase one or more files from disk or diskette

(Built-in command in CP /M, ERA .COM or ERA.PRL in MP/M)

FORMAT:

ERA
filename

filematch^

ARGUMENTS:

filename A filename argument must be given with ERA to tell it
to erase a certain file. A filename must include the file's
extension , and it can also include a drive specifier.

filematch A filename match can be supplied for a filename (as
described in Chapter 2) to tell ERA to erase several files
at once. The filematch `*.*' with ERA will erase all of
the files in the current drive in version 1.4, or all of the
files in the current drive and user area but not other user
areas, in version 2.2 and MP/M.

DESCRIPTION:

The ERA command erases any file that is supplied as a filename
argument, unless the file is read-only (has the $R/O attribute), or the
current disk (or disk specified) is read-only. If ERA does not find the
file, it displays the message "No File". ERA, in CP/M version 2.2
and MP/M, only erases files in the current user area. You can erase
files in an alternate drive by specifying the drive as part of the filename
or filematch (e.g., `ERA B:FILEI.*' erases all instances of FILET
with any extensions that exist in the current user area in drive B).

232 THE CP/M HANDBOOK WITH MP/M

HOW TO USE IT:

ERA is a built-in command in CP/M version 1.4 and version 2.2
that you can execute from any drive. In MP/M, ERA is supplied as
ERA.COM or ERA.PRL (command file for absolute memory, or re-
locatable file for relocatable memory). ERA.COM or ERA.PRL must
exist in the current drive, or be referred to from another drive using a
drive specifier (e.g., B:ERA).

To erase an entire disk in CP/M version 1.4, you only need to use
the filematch `*.*' to match all the files on a disk. To erase an entire

disk in CP/M version 2.2 and MP/M, you must write a program that
will fill up the disk with nonsense data, or you must use the form
`ERA*.*' in each user area, making sure that there are no read-only
files (with the $R/O attribute) left undeleted.

EXAMPLES:

A> ERA SAMPLE. TXT I

(This command erases file SAMPLE. TXT in drive A.)

A> ERA B:JUMP.TXTJ

(This command erases file JUMP. TXT in drive B.)

OA> ERA*.* I

(This is an MP/M example, where ERA erases all files in user area 0
of drive A.)

A> ERA*. HEX I

(This command will erase all files that have `.HEX' extensions in
drive A.)

REFERENCE GUIDE 233

CP/M version 1.4
CP/M version 2.2

• MP/M version 1.0

Erase one or more files from disk or diskette

(ERAQ.COM or ERAQ. PRL in MP/M)

FORMAT:

ERA filematch

ARGUMENT:

filematch A filename match is supplied to tell ERAQ to erase
several files one after the other.

DESCRIPTION:

The ERAQ command erases in turn all of the files that match the
filematch argument, unless the file is read-only (has the $R/O attribute),
or the specified disk is read-only. Unlike ERA, ERAQ requests the user
to confirm before erasing each successive file.

HOW TO USE IT:

ERAQ is supplied under MP/M as ERAQ.COM or ERAQ.PRL
(command file for absolute memory, or relocatable file for relocatable
memory). ERAQ.COM or ERAQ.PRL must exist in the current drive,
or be referred to from another drive using a drive specifier (e.g.,
B: ERAQ).

To erase a user area, use the filematch `*.*' to match all of the files
in the current user area. To erase an entire disk, you must write a
program that will fill up the disk with some data, or you must use the
form `ERAQ*.*' in each user area, making sure that there are no
read-only files (with the $R/O attribute) left undeleted.

234 THE CP/M HANDBOOK WITH MP/M

EXAMPLE:

OA> ERAQ PROG. * J
A: PROG TXT? Y
A: PROG I NT? Y

REFERENCE GUIDE 235

CP/M version 1.4
CP/M version 2.2

• MP/M version 1.0

Transform a COM file into a HEX file

(GENHEX.COM or GENHEX.PRL)

FORMAT:

GENHEX program name .COM offset

ARGUMENTS:

programname The name of the program (must be a COM type).
May be preceded by a disk designator.

offset Offset for the .HEX file to be generated (hexadecimal).

DESCRIPTION:

This command generates a file of type HEX from a file of type
COM and offsets the resulting file by a specified amount.

HOW TO USE IT:

This command is generally used to generate a page -relocatable

(PRL type) file using a GENMOD command. In this case , the offset is
either 0 or 0100 bytes (hexadecimal).

EXAMPLE:

1A> GENHEX ACTION .COM 1001

236 THE CP/M HANDBOOK WITH MP/M

CP/M version 1.4
CP/M version 2.2

• MP/M version 1.0

Generate a modified program.
Create a relocatable program from two

concatenated `.HEX'files

(GENMOD .COM or GENMOD.PRL)

FORMAT:

GENMOD file. hex file . prl $bbbb

ARGUMENTS:

file. hex This'. HEX' file must contain two concatenated `.HEX'
files offset from each other by 100H bytes.

file.prl This is the name of the `.PRL' file to be created. You
could substitute a `.RSP ' extension to create a resident
system process.

$bbbb This is an optional hexadecimal number of bytes of
additional memory for the program.

DESCRIPTION:

The GENMOD program produces a relocatable program with a
`.PRL' (or `.RSP') extension from two concatenated `.HEX' files offset
by 100H. If $bbbb is supplied, GENMOD also allots the amount of
additional memory for the program.

REFERENCE GUIDE 237

HOW TO USE IT:

GENMOD must exist on diskette as GENMOD.COM or
GENMOD.PRL. GENMOD.COM can also be executed from CP/M
version 2.2, but the'. PRL' file can only be executed under MP/M.

EXAMPLE:

I A> GENMOD FINAL. HEX PERFORM. PRL $10001

(This commandproduces the relocatable program PERFORM.PRL
from the file FINAL. HEX (which is a concatenation of two `.HEX'

files offset by IOOH), with 1000H additional memory.)

238 THE CP/M HANDBOOK WITH MP/M

GENSYS

• CP/M version 1.4
• CP/M version 2.2
• MP/M version 1.0

Generate an MP/M system from CP/M

(GENSYS.COM)

FORMAT:

GENSYS

DESCRIPTION:

The GENSYS program asks several questions about the new system,
then builds the file MPM.SYS to hold the system. The program
MPMLDR.COM loads the system (MPM.SYS) into memory. GENSYS
is used to generate new versions of the system. GENSYS also allows
the user to incorporate resident processes with the system. GENSYS
looks for files with `.RSP' extensions, and asks the user to select resident
processes from a list.

HOW TO USE IT:

GENSYS.COM can be executed from a CP/M or MP/M system.
You must answer questions with a value and a RETURN. For a more
complete description of each question, see Chapter 5, "Installing and
Altering MP/M."

REFERENCE GUIDE 239

EXAMPLE:

1A> GENSYS J

MP/M 1.0 System Generation

Top page of memory = CO J
Number of consoles = 2 J
Breakpoint RST # = 5 1
Allocate user stacks for system calls (Y/N) Y J

Memory segment bases , (ff terminates list)
:00J
:40J
60J

:ff J

Select Resident System Process: (Y/N)
TIME ?Y J
SCHED ?NJ
ATTACH ?Y J
SPOOL ?Y J

240 THE CP/M HANDBOOK WITH MP/M

• CP/M version 1.4
• CP/M version 2.2
• MP/M version 1.0

Load a file into executable memory
Converts a `.HEX' file into an executable

command '. COM' file

(LOAD.COM)

FORMAT:

LOAD filename

ARGUMENT:

filename The name of a file with a `.HEX' extension; the extension
is not necessary.

DESCRIPTION:

The LOAD program takes a program that is in valid Intel "hexa-
decimal format" and converts it into a command file that can be
executed (file with a `.COM' extension). The command file becomes
filename.COM (the hexadecimal file is filename.HEX).

HOW TO USE IT:

To execute LOAD.COM, you must have it on an accessible disk.
You can execute LOAD.COM from an alternate disk by specifying a
drive letter prefix to the command. You use the `. COM' file created
by LOAD as a transient command, to be loaded and executed in the
TPA whenever you simply type the filename of filename.COM.

REFERENCE GUIDE 241

EXAMPLE:

A> LOAD SAMPLE I

(SAMPLE. HEX is converted to SAMPLE. COM.)

A> SAMPLE I

(You can now execute SAMPLE. COM.)

242 THE CP/M HANDBOOK WITH MP/M

• CP/M version 1.4
• CP/M version 2.2
• MP/M version 1.0

Reconfigure a version of CP/M to fit another
memory requirement

(MOVCPM.COM)

FORMAT:

MOVCPM

ARGUMENTS:

bb Optional memory size , in decimal digits representing
number of kilobytes (e.g., "32" for 32K system). If re-
placed with an asterisk (*), MOVCPM would calculate
the total amount of RAM (random access memory) of
the host computer, and build a CP/M for that size.

* A second asterisk (*) after either bb or the first asterisk
(*) tells MOVCPM to leave the new system in memory
in preparation for a SYSGEN or SAVE operation. This
argument is also optional . If it is not supplied, MOVCPM
executes the new system without recording it on diskette
(disk).

DESCRIPTION:

The MOVCPM program creates a memory image of the system and
reconfigures it to match a given size in bb or the maximum size of the
host system. If the second asterisk (*) is not supplied as in `MOVCPM * * ';
or bb is not followed with an asterisk as in 'MOVCPM 32 *', MOVCPM

REFERENCE GUIDE 243

leaves the newly tailored system in the TPA in preparation for a SYSGEN
or SAVE to record the version on diskette . If you do not supply the
asterisk , then the new system will be executed but not premanently
recorded.

HOW TO USE IT:

You can execute MOVCPM.COM if it exists on any accessible diskette
or disk. It is most often used to prepare a new system for alterations
for another hardware environment.

EXAMPLES:

A> MOVCPM 481

(This command constructs a 48K version of CP/M and executes it
without storing it on diskette.)

A> MOVCPM32*J

(This command creates a 32K CP/M and leaves it in memory in
preparation for a S YSGEN or SA VE operation.)

READY FOR "SYSGEN" OR
"SAVE 32 CPM32. COM"

A> MOVCPM * *I

(This command constructs a maximum memory version of CP/M
and leaves it in memory, ready for a SYSGEN or SAVE.)

NOTE: for additional information see Chapter 5, "Installing and
Altering CP/M."

244 THE CP/M HANDBOOK WITH MP/M

CP/M version 1.4
CP/M version 2.2

• MP/M version 1.0

MP/M loader
Load, relocate, and execute the MP/M system

(MPMLDR.COM)

FORMAT:

MPMLDR

DESCRIPTION:

The MPMLDR program loads the file MPM.SYS that contains the
generated system, relocates it in memory, then executes it to bring up
MP/M. MPMLDR also provides a display of the system parameters-
the number of consoles, the breakpoint, the top of memory, and a
memory segment table.

HOW TO USE IT:

You can execute MPMLDR.COM from MP/M or from CP/M.
You can also bring it into the system from the first two tracks of a system
diskette using a cold start loader program. For more information, see
Chapter 5, "Installing and Altering MP/M."

EXAMPLE:

A > MPMLDR J

MP/M 1.0 Loader

Number of consoles = 2
Breakpoint RST # = 5
Top of memory = COFFH
Memory Segment Table:

SYSTEM DAT 0000H 0100

REFERENCE GUIDE 245

CP/M version 1.4
CP/M version 2.2

• MP/M version 1.0

Display MP/M system status

(Resident process of MPMSTAT.PRL)

FORMAT:

MPMSTAT

DESCRIPTION:

MPMSTAT displays the names of processes waiting for CPU time,
processes waiting for messages from queues, and processes waiting to
send messages. It also displays delayed and polling processes, flags
waiting, flags set, queues in operation, processes waiting for consoles,
processes attached to consoles, as well as memory allocation for the
entire system.

EXAMPLE:

I A> MPMSTAT J

Note: The output shows the status of the various processes. See
page 104 for detailed example.

246 THE CP/M HANDBOOK WITH MP/M

• CP/M version 1.4
• CP/M version 2.2
• MP/M version 1.0

Peripheral Interchange Program
Perform one or multiple copy operations

(PIP.COM)

FORMATS:

d: newcopy
1. PIP

d:
= d: oldcopy[p]

2. PIP
*d: newcopy =d: oldcopy[p]
*

*I

dev: l dev: `dev:
3. PIP } [p], S

d:filename d:filename d:filename

4. PIP d: =d:filematch[p]

ARGUMENTS:

d:newcopy The user must choose, in formats 1 and 2, whether
{ d: } he/she wants the new copy to have the new name

newcopy, or whether the new copy should have the
same name but be on a different drive, drive d:.

REFERENCE GUIDE 247

d:oldcopy In both forms 1 and 2, the name of the file being
copied is required, but the drive specifier is not.

[p] In all formats, the user can use a PIP parameter
following the file to be affected by the parameter
(optional).

dev: In format 3, the user must choose between a dev:
d:filename (device name, e.g., CON:) or a filename with optional

d: drive specifier. This form can be used to send a file
to a device, receive data from a device to a file, or
send special device codes to a device.

d: =d:filematch Both d: for destination and filematch for source is re-
quired; the d: on filematch is optional. Format 4 is
used to copy several files onto another diskette using
the same names for the files.

DESCRIPTION:

Format 1: If only d: is supplied and not newcopy, the new copy will
have the same name as the old copy; however, the d: on the left must
be different from the d: optional prefix on the right. If d: is omitted,
oldcopy is assumed to be on the current diskette drive. If the user
supplies newcopy, the new copy will have a new name , and the user
can copy oldcopy to newcopy without drive specifications (without d:
or d:).

Format 2: PIP expressions follow the same rules; however, if the
user wants to perform several PIP operations, he/she can execute PIP
and leave it in memory while the user provides PIP expressions to
PIP's asterisk (*) prompt. PIP can be terminated by typing RETURN
only. With some parameters, different actions occur when PIP is
executed as a command (format 1) rather than as a program (format 2).

Format 3: In PIP commands or expressions, dev: (device names)
can be used as well as d:filename (filenames). The user cannot copy
from a receive-only device, and the user cannot send to a send-only
device. The left side of the expression is always the destination (i.e., a
receiving device or file), and the right side is always the source (i.e.,
the sending device or file being copied). The user can concatenate (join)
source files into one destination file or device. The user can also use
special device names listed in Appendix F.

248 THE CP/M HANDBOOK WITH MP/M

Format 4: The user can copy several files onto another diskette by
using a filematch (filename match) with optional drive specifier d:.

Note that the drive specifier on the left side is required (d:), and that
the new copies have the same name as the old ones, but are on another
diskette. The user cannot have two files with the same name on the
same diskette (in the same user area).

The device names allowed in PIP expressions are listed in Appendix
F. The keywords used to perform special functions are listed in Ap-
pendix G.

HOW TO USE IT:

You can execute PIP.COM from any alternate drive by specifying
the drive letter as a prefix to the command (e.g., "B:PIP d "). You
can also execute PIP, leave it in memory while you pull out the system
diskette to insert one to be copied, and return to the system after re-
inserting the system diskette and terminating PIP with a simple RETURN.
Chapter 3 has complete descriptions of practically every PIP application.

EXAMPLES:

A> PIP B:=*.* I

(This command copies all of the files on the current drive to drive B.)

A> PIP I

*FILE2=TEST2 I

(This expression copies TEST2 and calls the copy FILE2.)

*LST: = FILE2 I

(This expression sends a copy of FILE2 to the LST: device.)

*PUN: = NUL:, PROG. ASM, EOF: ,[

(This expression sends 40 nulls to the PUN: device, along with the
file PROG.ASM, and the end-of-file character.)

* B: = PROG. ASM I

(Create a copy of PROG.ASM on drive B with the same name.)

REFERENCE GUIDE 249

EXAMPLES:

OA > SCHED 12/31/80 23 :59 EIGHTY,

(This command schedules the program EIGHTY. COM (or
EIGHTY. PRL)for execution on December 31st, 1980, at 11 :59 PM.)

256 THE CP/M HANDBOOK WITH MP/M

CP/M version 1.4
CP/M version 2.2

• MP/M version 1.0

Send one or more files to the spool queue,
usually for the line printer

(Resident process or SPOOL.PRL)

FORMAT:

SPOOL filename , filename ...

ARGUMENTS:

filename The first filename is required, and the following filenames
and are optional additional files to be sent to the spool queue.
filename The user must also specify filename extensions.

DESCRIPTION:

The SPOOL command sends the files one by one to the spool queue,
where they wait in order until they are successfully handled by the LST:
device (usually the line printer, although other devices can be assigned
to the LST: device using STAT). The files must be ASCII text files
(source files, edited files, listings, etc.).

HOW TO USE IT:

The SPOOL program should either be a `.PRL' file in the current
disk drive, or a resident system process, which you can execute as a
command providing at least one filename. Use the command STOPSPLR
to cancel the spool queue operation.

REFERENCE GUIDE 257

NOTE: if SPOOL.PRL is used instead of SPOOL. RSP, the user may
abort from another terminal. For example , if SPOOL. PRL was acti-
vated from terminal 3, it may be stopped by typing:

2B> STOPSPLR 31

EXAMPLE:

OA> SPOOL PROG. PRN, SAMPLE. TXT, NOVEL. J NC

(This command sends PROD. PRN, SAMPLE. TXT and NOVEL. JNC
to the LST.• device, which is usually a line printer or teletype device.
The files wait in the spool queue until handled by the device.)

258 THE CP/M HANDBOOK WITH MP/M

• CP/M version 1.4
• CP/M version 2.2
• MP/M version 1.0

Display status information, and assign devices

(STAT.COM or STAT.PRL)

FORMATS:

1. STAT
DEV:

VAL.

2. STAT gen: =dev:,gen: =dev:,...

3. STAT d: = R /O

4. STAT d:
filename

^

5. STAT d:

filematch

filename
$S
$R/O

$R/W

. TAT d:

filematch

DSK:

$SYS
$DIR

USR:

ARGUMENTS:

DEV: In format 1, DEV: produces the display of actual device
VAL: f assignments, while VAL: produces a display of potential

device assignments (in CP/M version 2.2, VAL: also
lists the possible STAT commands).

REFERENCE GUIDE 259

gen: =dev; In format 2, gen: stands for a generic device (CON:,
PUN:, RDR:, or LST:), while dev: stands for any
physical device that is appropriate for a device assign-
ment to a generic device.

d: = R /O In format 3, d: = R/O (where d: is a drive letter) makes
drive d: read-only; with only d:, STAT displays the drive
status; with no argument STAT displays the current
drive's status (i.e., read-only or read-write).

filename In format 4, the user could supply d:filename (d: is
d: optional) to display the status (size in records and bytes,

filematch number of extents, etc.) of a specific file, or the user
could supply d:filematch to display several files at once.

$S
$R/O
$SYS
$ R/W
$DIR

When using the arguments for format 4, format 5 allows
CP/M version 2.2 and MP/M users only to use the $S
parameter to display more size information for a file or
group of files and to use the $R/O, $R/W, $SYS and
$DIR parameters to set file attributes. The $R/O (read-
only) attribute prevents overwriting or deleting the file;
it is cancelled by the $R/W (read-write) attribute. The
$SYS (system) attribute "hides" the file from the DIR
command; it is cancelled by the $DIR (directory) attribute.

d: DSK: In CP/M version 2.2 and MP/M only, format 6 displays
USR: disk characteristics with DSK: (the current disk, or the

optionally alternate d; drive). To display the current and
active user areas, use USR:.

DESCRIPTION:

STAT provides statistical information about files and disks (diskettes),
and assigns physical devices to generic device names (to be used with
PIP). STAT also makes a disk read-only (format 3), a file read-only
(format 5) in CP/M version 2.2 and MP/M, and displays the current
user area, as well as all active user areas.

HOW TO USE IT:

To display statistical information , simply execute STAT.COM (or
STAT.PRL) in one of its various formats. To assign devices, you

260 THE CP/M HANDBOOK WITH MP/M

should use format 2 . Generic device names are CON : (console device),
RDR: (reader device), PUN: (punch device), and LST : (list device),
while physical devices are listed with PIP in Chapter 3.

EXAMPLES:

Using CP/M version 2.2:

A> STAT PIP.COM $S,j

Size Recs Bytes Ext Acc
55 55 12K 1 R/O A:PIP.COM

A> STAT SAMPLE. COM $R/O f

A> STAT B: ,j

BYTES REMAINING ON B: 192K
B: R/O
Al

REFERENCE GUIDE 261

CP/M version 1.4
CP/M version 2.2

• MP/M version 1.0

Cancel a spool queue operation and empty the spool queue

(Resident process or STOPSPLR.PRL)

FORMAT:

STOPSPLR

DESCRIPTION:

The command STOPSPLR stops a SPOOL operation in progress
and empties the spool queue . (See the SPOOL command.)

EXAMPLE:

OA> STOPSPLR d

262 THE CP/M HANDBOOK WITH MP/M

• CP/M version 1.4
• CP/M version 2.2
• MP/M version 1.0

Execute a batch of commands

(SUBMIT.COM or SUBMIT.PRL)

FORMAT:

SUBMIT filename vl v2 v3...

ARGUMENTS:

filename The required name of a text file of command lines,
expected to have a '.SUB' extension; '.SUB' is not
supplied in the filename argument.

v7 v2 v3 ... The optional values to be plugged into variables in the
submit file . Variables take the form $ 1, $2, $3, etc., and
vl substitutes for $1 , v2 substitutes for $2, etc.

DESCRIPTION:

The SUBMIT program accepts the file filename.SUB and builds the
file $$$.SUB, which is executed after a warm start (after the SUBMIT
program terminates). The $$$.SUB file's command lines are executed
until the file is exhausted. To build the $$$.SUB file, SUBMIT sub-
stitutes vI for $1 in the '.SUB' file, v2 for $2, etc. Submitted files are
only acted upon when they appear in drive A.

HOW TO USE IT:

Create a '.SUB' file, using ED, that contains command lines with
arguments expressed as variables ($1, $2, etc.). Execute the batch of
commands by executing SUBMIT.COM on the '. SUB' file.

REFERENCE GUIDE 263

EXAMPLE:

Suppose the file SMALL. SUB contained these lines of text:

DIR $1.*
PIP $2:=$1.BAK
ERA $1. BAK

If the user submitted this file using this SUBMIT command:

A> SUBMIT SMALL PROG BI

The user would get the following command lines in $$$.SUB:

DIR PROG. *
PIP B: = PROG. BAK
ERA PROG.BAK

When SUBMIT finished substituting to build $$$. SUB, the system
would execute the contents of $$$.SUB.

264 THE CP/M HANDBOOK WITH MP/M

CP/M version 1.4
CP/M version 2.2

• MP/M version 1.0

Transform a PRL file into a COMfile

(PRLCOM . COM or PRLCOM.PRL)

FORMAT:

PRLGOM programnamel . PRL programname2. COM

ARGUMENTS:

programnamel The name of the source program (may be preceded
by a disk unit designator).

programname2 The name of the destination program (may be pre-
ceded by a disk unit designator).

DESCRIPTION:

This command transforms a program of type PRL into a program
of type COM. If the name of the resulting COM program is already
used, the user is told and given the option to cancel the command.

HOW TO USE IT:

Whenever the user wants a program to reside in an absolute TPA
rather than a relocatable memory segment, the result is achieved with
PRLCOM , by making a program a COM file instead of a PRL file.

EXAMPLES:

l A > PRLCOM DOIT. PRL DOIT. COM J

or:
2A> PRLCOM DOIT. PRL B : NUNAME.COMJ

REFERENCE GUIDE 251

• CP/M version 1.4
• CP/M version 2.2
• MP/M version 1.0

Rename a file

(Built -in command in CP /M, REN.COM or REN.PRL in MP/M)

FORMAT:

REN newname=oldname

ARGUMENTS:

newname Required arguments for filenames including extensions;
and drive letter prefixes are not allowed.
oldname

DESCRIPTION:

The REN command (or program) renames oldname to newname;
the user must include the entire filenames with extensions.

HOW TO USE IT:

In CP/M, REN is a built-in command that can be executed at any
time. In MP/M, you have to have REN.COM or REN.PRL on an
accessible disk.

EXAMPLE:

A> REN NEWTRIC. HEX =OLDDOG. HEX,

(This command renames the file OLDDOG.HEX to NEWTRIC HEX.)

252 THE CP/M HANDBOOK WITH MP/M

SAVE

FORMAT:

• CP/M version 1.4
• CP/M version 2.2
• MP/M version 1.0

Save contents of memory in a disk file

(Built -in command)

SAVE p filename

ARGUMENTS:

p The required number of "pages" (256-byte segments) to
be saved, in decimal.

filename The required name of the new disk file, with extension.

DESCRIPTION:

The SAVE command saves the contents of the TPA (scratchpad
memory) starting at location 100H and up to p pages (256-byte segments)
in filename, which can be subsequently debugged or executed (if the
contents of the TPA was an executable program before it was saved).

In MP/M, this operation is implemented within the revised debugger
programs DDT or SID.

HOW TO USE IT:

To calculate p, you must first use DDT to load the original program
into memory and use the NEXT value. The NEXT address will be 1
higher than the last address of the program; however, to figure the

REFERENCE GUIDE 253

number of pages, use this simple algorithm:
If NEXT's last two digits (hexadecimal) are 00, subtract lH (e.g.,

1 COOH -1 H =1 BFFH). If the last two digits are not 00, leave the
number alone. Now, take the first two digits, or the "high order bits"
(e.g., `1B ' from the value IBFFH), and convert that hexadecimal
value to decimal for the number of pages (p).

Since SAVE is built-in, you can execute it at any time.

NOTE: in version 1.4, the user cannot perform two consecutive SAVEs
on the same contents of the TPA, because the first SAVE causes a
directory operation that changes several areas of the TPA. In version
2.2, however, this problem has been fixed-the user can perform two
consecutive SAVEs on the same TPA.

EXAMPLE:

A> DDT SAMPLE. COM 1
NEXT PC

1DOO 00

- GOJ

(The value under NEXT is IDOOH. Subtract 1H, to get 1CFFH.
Take the number 1 CH and convert to decimal, to get 28.)

A> SAVE 28 COPY. COM d

254 THE CP/M HANDBOOK WITH MP/M

CP/M version 1.4
o CP/M version 2.2
• MP/M version 1.0

Schedule a program for execution at a later date and time

(Resident process or SCHED.PRL)

FORMAT:

SCHED mm/dd/yy hh: mm program

ARGUMENTS:

mm/dd/yy The required argument for date, where mm is the month
(1 to 12), dd is the day (01 to 31), and yy is the last two
digits of the year.

program The filename for a file with a `.COM' or `.PRL' exten-
sion; the extension does not have to be supplied.

DESCRIPTION:

The SCHED program, when executed, sits in the memory waiting
for the time and date to match what was given as arguments. When it
encounters that specific time and date, SCHED automatically executes
the program that is specified.

HOW TO USE IT:

The SCHED program might exist as a `.PRL' file, or as a resident
system process, and you must supply the proper arguments. Note that
anyone can reset the time or date with a TOD command operation, so
a certain amount of cooperation is needed to make SCHED reliable.

REFERENCE GUIDE 255

EXAMPLES:

OA> SCHED 12/31/80 23 :59 EIGHTY,

(This command schedules the program EIGHTY. COM (or
EIGHTY. PRL) for execution on December 31st, 1980, at 11 :59 PM.)

256 THE CP/M HANDBOOK WITH MP/M

• CP/M version 1.4
• CP/M version 2.2
• MP/M version 1.0

Generate a copy of CP/M
Bring the system into memory and/or make a

copy of the system diskette

(SYSGEN.COM)

FORMAT:

SYSGEN

DESCRIPTION:

The SYSGEN program initializes a system diskette (writes the first
two tracks of the diskette with the system). SYSGEN also brings the
system into memory, and executes it.

HOW TO USE IT:

Execute the SYSGEN.COM program:

A> SYSGEN)

SYSGEN VERSION xx.xx

SOURCE DRIVE NAME (OR RETURN TO SKIP) A

(Respond with the letter of the drive where the system is located,
unless you want to skip the system read operation if the system is al-
ready in memory due to a MO VCPM operation.)

SOURCE ON A, THEN TYPE RETURN,

FUNCTION COMPLETE

(System read operation is complete. The system is now in main
memory.)

REFERENCE GUIDE 265

multi-user system, since the computer only knows the time as you set it,
and other users might have scheduled programs to run using SCHED.

EXAMPLES:

OAS TODJ

Sat 12/29/79 02:37:21

OA > TOD 12/29/79 02:38:001

Strike a key to set time
Sat 12/29/79 02:38:00

268 THE CP /M HANDBOOK WITH MP/M

• CP/M version 1.4
• CP/M version 2.2
• MP/M version 1.0

Display contents of a file on the console
(terminal) display screen

(Built-in command in CP/M, TYPE.COM or TYPE.PRL in MP/M)

FORMAT:

TYPE

filename

filematch

ARGUMENTS:

filename The user must supply either a specific filename with ex-
filematch tension, or a filename match (filematch) to display several

files.

DESCRIPTION:

The TYPE command displays the contents of any file, but the user
will only be able to read the contents of an ASCII text file (source file,
`.PRN' file, or listing file).

HOW TO USE IT:

TYPE in CP/M is a built-in command that you can execute at any
time . In MP/M, it is supplied as either TYPE . COM (transient command)
or TYPE. PRL (relocatable program).

EXAMPLES:

A> TYPE SMALL. SUB J

A > TYPE *.TXT 1

REFERENCE GUIDE 269

CP/M version 1.4
CP/M version 2.2

• MP/M version 1.0

Change current user area,
or display user area in an MP/M system

(USER .COM or USER.PRL)

FORMAT:

1. USER n (MP/M only)

2. USER n

ARGUMENT:

n Required argument n in CP/M version 2.2, and optional
argument n in MP/M, stands for the user area number
(zero to fifteen.)

DESCRIPTION:

Format 1 displays the current user number if no n is supplied; if n is
supplied, USER changes the user area to user area n. Format 2 only
allows changing, and not displaying, the user area. Format 2 changes
the user area to user area n.

HOW TO USE IT:

The USER program is supplied either as USER.COM or USER.PRL.

EXAMPLE:

A> USER 3,(

A>

270 THE CP/M HANDBOOK WITH MP/M

o CP/M version 1.4
• CP/M version 2.2
• MP/M version 1.0

Extended SUBMIT facility to provide
input to programs executed in the submit file

(XSUB.COM)

FORMAT:

XSUB

DESCRIPTION:

When XSUB is placed at the beginning of a '.'SUB' file (or if XSUB
is executed as a command), it relocates to the area directly below the
CCP in order to process the command lines of the '.SUB' file and
thereby provides buffered console input to the programs executed
within the submit operation. Programs that read buffered console
input get their input directly from the'. SUB' file.

HOW TO USE IT:

Insert `XSUB' as the first command line of the '.SUB' file, and
submit the file to the SUBMIT program. XSUB remains active until
the next cold start, and the '.SUB' file is processed until it is exhausted.

REFERENCE GUIDE 271

EXAMPLE:

file NEW. SUB: XSUB
DDT
l$1.HEX
R
GO
SAVE 1 $2.COM

A> SUBMIT NEW THIS THAT,

(`THIS' substitutes for $1, and `THAT' substitutes for $2; the XSUB
program provides DDT with the DDT command lines 'ITHIS.HEX',
R, and 'GO', and the XSUBprovides the CCP with `SAVE1 THAT.COM'
XSUB remains active until a cold start).

272 THE CP/M HANDBOOK WITH MP/M

PRACTICAL HINTS

INTRODUCTION

Now that you have acquired a good working knowledge of CP/M
and its resources , here are some practical hints to improve your effective-
ness in using the CP/M system . This chapter suggests ways to prevent
some of the problems that can occur while using a CP/M system. A
variety of recommendations and solutions are offered.

The prevention of problems is important when using a computer
system . Very simple, obvious mistakes made by the user can cause
very serious , major errors in the program . Discipline on the part of the
user is , therefore , essential.

USER DISCIPLINE

Always make a copy of any new program or diskette being used for
the first time, in the event that the original may be damaged accidentally.
When inserting a new diskette on which you intend to write, execute a
CTRL-C to log it in the system. From time to time, execute a STAT or
a DIR command to verify your directory and the space remaining on
the diskette.

At the end of a session where a long file has been manipulated, it is
recommended that the user create a copy of this file on a fresh diskette.
Sectors will be copied sequentially, and the new copy will be loaded
much faster than the original file by any application program. The
original file should be retained as the backup version.

The computer room should be kept organized to encourage user
discipline. (A list of typical supplies is shown in the Appendix section
of this book.) All user documentation, blank diskettes, and user pro-
grams should be available. The startup procedure for the system should
be clearly posted, in addition to the precautions to be used for that
system.

273

HANDLING DISKETTES

Respect the magnetic and physical integrity of diskettes. When
handling diskettes:

- Do not put any magnetic object in contact with or in close proxi-
mity to a diskette. Examples of magnetic objects include trans-
formers (telephones), screwdrivers (most are magnetized after a
while), and any other metallic objects that could have become
magnetized.

- Always store diskettes in their dust covers. Do not expose them
to contamination by dust, smoke or other particles. In particular,
do not scratch, touch, or attempt to clean the disk surface.

- Always label disks properly; indicate the date and the contents.
A practical hint is to generate a listing of the directory for each
disk, cut it out and then paste it on the disk cover so that the disk
contents can be inspected at a glance.

- Keep a copy of any important diskettes in a separate location so
that you do not risk losing all of your information at once.

- Do not bend, fold, spindle or mutilate diskettes.
- Do not expose diskettes to heat or direct sunlight.
- Always write on the diskette with a felt-tipped pen. Do not use a

sharp pen, as this damages the diskette inside.
- Be sure that a diskette is not fully inserted in the disk drive at the

time that the power is turned on or off.
- Make back-up copies of all essential information regularly.
Diskettes should be carefully protected from contamination by

dust. This is particularly important in a dry environment where special
care must be taken. Dust accumulates a static charge which makes the
dust, as well as other particles, stick to the surface of the diskette.

Several precautions should be taken:
- Never place diskettes close to a source of dust. In particular, this

applies to warehouses, stockrooms, dental work areas (near the
grinding of dental plaster), classrooms (with chalk dust), and in-
dustrial environments.

- Keep the environment reasonably dust-free by frequently using a
vacuum cleaner and keeping the tops of desks and cabinets wiped
clean. If necessary, place a filter on the heating system or surface,
or install an electrostatic air cleaner for the room.

- Try to prevent the buildup of static electricity in the room. A
special antistatic spray may be used on the carpeting. The most
effective solution, however, is to use a humidifier.

- Of course, it is also important to always keep the diskettes inside
their covers.

274 THE CP/M HANDBOOK WITH MP/M

THE PRINTER

Most quality printers will work very reliably for months or even
years without breaking down. However, they must be treated with
respect, or rather in a very orderly manner. All mechanical adjustments
must be correct, without exception. If the user does not learn the pur-
poses for all of the levers and make the correct adjustments, the printer
may never operate correctly.

An example of a lever that should be checked is the "paper width"
lever (labeled A through E on IBM typewriters). If a thin paper is used
in the printer, and the lever is (accidentally) left on D or E (the settings
for heavier paper), the printer may malfunction in an unpredictable
manner. It may appear that there is a software interface problem,
whereas, in fact, a simple paper width lever adjustment needs to be
made. Setting the lever on "A" will correct the problem.

LISTINGS

Listings may require a significant amount of time, since the printer
is usually the slowest input/output device connected to the computer.
It is often convenient for the operator to walk away while the listing is
in progress. However, it is strongly recommended that the operator
check frequently on the correct operation of the printer. This is
especially important at the beginning of a listing, when the paper could
possibly jam in the printer (especially if self-adhesive labels are being
used). Also, if "silk" ribbons are being used, they will stop abruptly
at the end of the roll, rather than cause the characters to fade away
progressively. As a result, part of a file listing could be totally blank.
Unless the highest printing quality is required, plain ribbons are recom-
mended.

When printing labels, it is important that the operator be present at
all times. This is because any malfunction-including a mechanical
malfunction of the printer-might result either in skipping a line or
the jamming of labels. Either one of these occurrences would require a
restart of the operation and could also result in physical damage to
the printer (in the case of a jam).

Whenever a problem occurs during a listing, the listing must be
restarted. The most frequent case consists of attempting to restart the
listing halfway into a file. If the file is long, the safest procedure is to

use PIP or ED (described in Chapter 3 and 4) to select the portion that
needs to be printed out of the initial file. If the file is of moderate length,
however, a quick and convenient solution consists of listing the file at
high speed on the CRT display, then turning the printer on at the right

PRACTICAL HINTS 275

moment with a CTRL-P, if the printing program allows the user to do
so. TYPE allows this, but other specialized printing programs may not.

If the printer does not work when the system is turned on, check all
physical settings on the printer. (It might be in local mode, for example.)
Also, if several CP/M versions are being used on your installation,
verify that your CP/M disk corresponds to the type of printer actually
being used-a common mistake.

When doing long listings, it is possible for the operator to specify
the listing of multiple files and walk away from the printer for an
extended period of time (using a PRN assignment, for example).

Finally, for faster listings, use PIP rather than TYPE (use CON: _
for a listing on the CRT and LST: = for a listing on the printer).

FILES

File Overflow

If the size of a file exceeds the capacity of a diskette, it will have to
reside on two or more diskettes. In general, you should not just switch
to a second diskette once the first one overflows. Try to order your
file on the first diskette according to some useful criterion. For example,
if your file is a name and address list, order it alphabetically or by zip
code. If an alphabetical ordering is used, the first diskette will contain
the names from A through L, and the second diskette will be used to
store the names from M through Z. Each diskette will be approximately
half-empty. This is a convenient partitioning of the diskette. As a result,
it will still be possible, by using an appropriate program, to obtain a
zip-sorted listing; however, there will be two separate zip sorts, one
per diskette. They cannot be merged unless a hard disk is available, i.e.,
a disk with a large capacity.

Another possibility, once a file grows too large, is to separate it into
subgroups. For example, if the file contains names and addresses of
manufacturers and customers, these could be separated and placed on
different diskettes.

Still another problem may occur. Assume you have a large file, say
170K, that you want to sort. Your sort program is on A, and A is
fairly full: it has 120K of files. You will often not be able to sort, as
many sorting programs require at least 170K of "workspace" on the
disk in order to sort a 170K file.

The solution is simple: create a new system disk with only the SORT

276 THE CP/M HANDBOOK WITH MP/M

program on it, and use it. It will have enough space to sort. If the
sort program still will not operate, you must cut your original file into
two smaller ones by using an editor or other program that can extract
part of your file (such as PIP).

Merging Files

Recall that PIP can be used to conveniently merge two or more files.

Wrong Word

A word or a code may need to be changed throughout the file. The
editor program can accomplish this conveniently. See Chapter 4 for
details.

Damaged File

Due to an operator's error or some system malfunction, a file could
be damaged. This could have occurred when the operator typed control
characters not allowed by the program, or because some type of failure
occurred. However, as a result, the file will no longer load or execute.
In many cases, if you are familiar with the structure of the file, i.e.,
the way that the file should look, and if the file contains text, it is
possible to recover the file through appropriate surgery performed
with the editor. The details are specific to the file being operated upon.
Often, text files can be restored and salvaged. However, if the file is
small, it is usually best to retype it rather than to attempt to save it,
unless you are already familiar with such an operation.

When a file that was working correctly suddenly appears to be
damaged or is misbehaving, an operator's error may be suspected.
However, another frequent occurrence is a damaged system or program
diskette. If the system diskette has been contaminated or damaged in
any way, the information that it contains will have been altered and
the system's behavior will become erratic. The usual programs may
appear to execute normally. However, in fact, some of the commands
do not work correctly and will damage existing files. Unfortunately,
this will not be detected until a file has been significantly damaged. In
this case, switch to a new system diskette and a new program diskette.
Create a new file or use a backup copy of the old file. If this works,
you should suspect that one of the previous diskettes had been damaged
and discard it, or them.

PRACTICAL HINTS 277

USEFUL PROGRAMS

Editor

Chapter 4 showed that an editor is a powerful facility for operating
on files and modifying them. ED provides such a facility. Other com-
mercial editors are available that may be found to be more powerful
or more convenient.

Track to Track Copier

A number of utility programs are also usually provided by the manu-
facturer of the computer system or the disk controller. A disk copier
program will usually copy one disk from another, one track at a time.
It is much faster than PIP when an entire diskette is being copied. A
direct disk editor may also be available for performing changes on the
diskette and examining it.

Erasing a Diskette

A diskette may need to be erased for one of two reasons: if the diskette
simply needed to be erased and was not damaged, or if the diskette's
directory was altered, rendering the diskette unusable (assuming that
the diskette is still physically intact).

Erasing a "good" diskette may be accomplished by the command
ERA*.*. Otherwise, in the case of a damaged directory, the diskette
may be erased with an appropriate initialization program. Such a pro-
gram, often called INIT, is provided by the computer or the disk con-
troller's manufacturer, and is different for each computer system. INIT
is a useful facility for erasing diskettes quickly.

Sequence of Commands

When executing a sequence of commands frequently, the SUBMIT
file command may be created. The file consists of the sequence of
commands that have to be executed in the computer and would be
created under an editor such as ED. Then, by typing SUBMIT, followed
by the name of the program, the sequence will be executed automatically.
For example, if a given program is used frequently and requires the
typing of a number of standard parameters before it can be used, the
sequence can easily be typed into a file called START.SUB. The operator
would only have to type the following in order to execute this program:

SUBMIT START,

278 THE CP/M HANDBOOK WITH MP/M

STOP

When something is going wrong, you may want to stop everything.
Do not pull the electrical cord out of the outlet . First, try CTRL-C. If
it does not work, use RESET . Remember , however, that you will lose
any information in the computer ' s memory . You will not damage the
files . To stop the printer, you can physically turn it off.

MISCELLANEOUS HINTS

Remember that CP/M itself "does not take up any space" on your
diskette. More exactly, two tracks are always "wasted" on an 8-inch
diskette, whether you install CP/M or not. It is often convenient to
put CP/M on most of your diskettes when they are blank. This way,
you can boot from any diskette. Also you don't risk damaging files
when disk swapping with PIP if you make the wrong move.

If you are in a duplicating mood, PIP is the next most useful program.

THE SEVEN COMMANDMENTS AFTER THE SYSTEM FAILS

Suspect the Operator First:

1. Check the mechanicals:
- Are all switch positions correct? (Check systematically. No

exceptions.)
- Are fuses intact?
- Are all cables attached with no loose or torn connections?

2. Did you give the correct command?
- Turn everything off. Now, go turn the system on.
- Repeat the command.

Suspect the Diskette:

3. Use a fresh diskette. (Often, the current diskette has been damaged

through incorrect handling and will cause erratic system behavior.
- Use a backup diskette. Do not use any program on your current

diskette.
- If no complete single backup exists, take the time to generate

one.

PRACTICAL HINTS 279

Suspect the Software:

4. Make sure that you are using the correct programs:
- The correct CP/M version if you have several.
- The correct computer/interpreter for your application program.

For example, CBASIC version 2 may be required.
- The correct application program.
Many application programs, word processors in particular, must
be adapted to your terminal and printer. Unless this is done,
some keys on the terminal may not work, and you may not be
able to print.

Suspect the Hardware Last:

5. Check the mechanicals again, very thoroughly.
- In particular, remove boards, clean the connections if neces-

sary, and insert them back in place securely.
- If the source of the malfunction can be attributed to a board,

remove components from sockets, clean connections, and re-
insert them.

6. Always try to identify the suspected malfunctioning device by ex-
changing it with a known good one: swap boards, swap printers,
etc. This will give you positive proof and save much time.
Never indict a device until you have tried swapping it with a
known good one. A good deal of effort could otherwise be
wasted.

7. From now on, use the correct prevention techniques, as explained
in this book. In short:
- Always be disciplined.
- Don't use short cuts. Make no exceptions to the rules.

Finally, you will find a number of useful checklists in the Appendix
section of this book. Remember that prevention comes first. User disci-
pline is the essential key to successful computer utilization.

280 THE CP/M HANDBOOK WITH MP/M

THE FUTURE

HISTORY OF CP/M

The CP/M operating system was created by Gary Kildall. While
employed as a consultant for Intel Corporation, Gary Kildall wrote
the first high-level language compiler produced by Intel, PL/M. Then,
in 1974, he created his first version of a CP/M file system which was
designed (at the time) to support a resident PL/M compiler.

CP/M made its initial commercial appearance in 1975 when the
first licensing contracts were entered, but went relatively unnoticed for
at least a year. During this time, the early versions of the editor (ED),
the assembler (ASM), and the debugger (DDT) were developed. The
first large-scale commercial user of this operating system was IMSAI
(now defunct), which was licensed to distribute the CP/M version 1.3
that evolved into what IMSAI called IMDOS. CP/M has now evolved
into CP/M version 2.2 (and successive versions), which is designed to
take advantage of the larger storage capabilities of the hard disks now
available. MP/M was designed to provide a multi-user time-sharing
environment for multi-programming systems.

At this time, CP/M is probably one of the most frequently used
operating systems on microcomputers. Although it can be criticized by
operating systems users and designers who are familiar with more
powerful time-sharing machines, it serves its purpose well, and has
become a de-facto standard for many microcomputer users.

CP/M AND OTHER OPERATING SYSTEMS '

Developing a good operating system has always represented a major
investment. As a result, powerful time-sharing operating systems have
been developed for only a few large computers. The most complex
type of operating system is a time-sharing system with powerful sched-
uling and protection strategies. Although no consensus exists as to
which time-sharing system is the best, the UNIX operating system is

281

one that has gained a great deal of popularity in the 16-bit minicomputer
field. A number of attempts are being made to implement UNIX on
16-bit microcomputers. However, the investment required to make
these microcomputers fully compatible with a system like UNIX is
very large, and the probability of complete success is limited.

One of the main advantages of CP/M (beyond convenience) is the
fact that all CP/M-compatible software and files can now be shared
by users. CP/M has the virtues of any standard operating system:
compatibility. For this reason, CP/M will probably be used for a long
time to come-as long as the processors on which it usually resides are
being built.

EVOLUTION

Because improvements (and corrections) can always be made to any
existing large program, CP/M and MP/M will continue to evolve.
However, later versions of these two systems are usually compatible
with previous ones. This means in practice, that most of the knowledge
you may have acquired by reading this book should be applicable to
any future versions of CP/M or MP/M that will be released. Addi-
tionally, by using and understanding CP/M, you will understand
the functions of a "standard" operating system. Once these functions
are understood, you should be capable of adapting easily to another
operating system.

CONCLUSION

After reading this book, you should be proficient at using your
CP/M-equipped computer. The CP/M Handbook (With MP/M)
was designed to teach you how to use your system and to help you
understand how it operates.

When learning how to use any program such as CP/M, remember
that discipline is the key to trouble-free operation of a computer. By
following proper procedures, errors and problems will be avoided.
Particularly at the beginning, follow all of the rules presented in the
text, strictly and without exception. As you become more experienced,
you may be able to modify or ignore some of the rules. The correct use
of a small computer and the peripherals is the subject of another book
by the author.

When using this book, you can refer to any chapter to improve your
understanding of a specific topic. With the exception of the first chapter,

282 THE CP/M HANDBOOK WITH MP/M

you do not need to memorize the entire contents of any chapter; you
can simply learn about those features of interest to you. Then, the
summaries in the Appendix section will prove to be quick references.

As you continue to use your computer system, you should learn
about all of its resources. For example, even if you do not plan to use
the editor now, you should try it. You will then be able to advance easily
to using a word processing program, or to adapting or evaluating a
new business program.

Once you have become familiar with all of the concepts and tech-
niques presented in this book, you will be a competent computer
user. You should then be capable of adapting quickly to other, similar
programs or operating systems.

APPENDIX 283

284 THE CP/M HANDBOOK WITH MP/M

APPENDIX A

COMMON CP/M ERROR MESSAGES

There are three error conditions that are common to the system.
These conditions are reported through the same general message:

BDOS ERR ON d: error

where d is a letter indicating the disk drive where the error occurred,
and error is one of the following error messages:

BAD SECTOR

SELECT

READ ONLY

There is also a fourth error condition for CP/M version 2.2 where
error would be the error message:

FILE R/O

(For descriptions of ASM, DDT, ED and other program errors, consult
the documentation supplied with the relevant program.)

BAD SECTOR:

A "bad sector" error will occur if the disk controller cannot retrieve
information from the diskette. This will occur when the diskette is worn
(has a "bad sector"), or if the disk drive controller is malfunctioning.
Another cause would be if the diskette was missing from the drive
when you tried to access it. You may also get this error if you are
trying to read files that were placed onto the diskette by a different
controller than the one you are currently using. Even though disk
controllers are said to be "IBM compatible", there might be small
differences in record formats. For example, files written to diskettes
using the Intel MDS-800 controller might be readable by another
controller, but files written by another controller might produce the
BAD SECTOR error when read by the MDS-800 controller. Also, if

APPENDIX 285

the information in a file has been damaged through diskette mishandling
or by a damaged or erroneous program , this error will occur.

To try and recover from this error, you can either do a + C (CTRL-C
to reboot the system), which aborts the program or file processing and
returns you to the system, or you can choose to ignore the error and
continue program execution and file processing by hitting RETURN,
which tells the system to ignore the bad sector.

It might not be safe to ignore the error! If your program or file
operation involves a directory write operation , you might destroy the
integrity of your diskette by ignoring the error . Make sure that you
have adequate backup copies.

SELECT:

This error occurs when you select a disk drive that does not exist.
The value for d is the drive you selected, which is in error. The system
automatically reboots when you hit any key on your terminal.

READ ONLY:

This error occurs when you try to write to a diskette that has been
designated as a "read only " diskette through use of the STAT
COMMAND (or by a program using the BDOS function). This error
could also occur if you inserted a new diskette without performing a
4 C to reboot the system (and change the map to the diskette); you
must perform a + C on any newly- inserted diskette in order to write to
the new diskette (overwrite files , delete files , create files , or update
files).

By hitting any key at your terminal , you can recover from this error
condition and automatically perform a system reboot (4 C), which
also changes the diskette to a read -write diskette (i.e., a diskette you
can read or write to).

FILE R/O:

This error occurs only in newer versions of CP/M (CP/M version
2.2 and up), when you try to write (overwrite, update, or delete) a file
that has the $R/O (read-only) attribute (assigned by STAT command
or a user program). The $R/O attribute is described fully in Chapter 2,
in the section on CP/M version 2.2 and MP/M.

To recover from this error, you can hit any key at your terminal.
The operation involving the read-only file is aborted, and you have to
change the $R/O attribute to $R/W in order to write to the file. Use
STAT to change file attributes.

286 THE CP/M HANDBOOK WITH MP/M

APPENDIX B
HEXADECIMAL CONVERSION TABLE

HEX 0 1 2 3 4 5 6 7 8 9 A B C D E F 00 000

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 0

1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 256 4096

2 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 512 8192

3 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 768 12288

4 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 1024 16384

5 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 1280 20480

6 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 1536 24576

7 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 1792 28672

8 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 2048 32768

9 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 2304 36864

A 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 2560 40960

B 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 2816 45056

C 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 3072 49152

D 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 3328 53248

E 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 3584 57344

F 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 3840 61440

APPENDIX 287

288 THE CP/M HANDBOOK WITH MP/M

APPENDIX C

ASCII CONVERSION TABLE

BIT NUMBERS
0 0 0 0 1 1 1 1

0 0 1 1 0 0 1

0 1 0 1 0 1 0 1

b,

1
b.

I

b,

I

b. b

I

b,

+
I

b,

I

HEX 1

O
0 2 3 4 5 6 7

0 0 0 0 0 NUL DLE SP 0 i P p

0 0 0 1 1 SOH DCl I 1 A Q a q

0 0 1 0 2 STX DC2 " 2 B R b

0 0 1 1 3 ETX DC3 p 3 C S c

0 1 0 0 4 EOT DC4 $ 4 D T d

0 1 0 1 5 ENQ NAK YO 5 E U e

0 1 1 0 6 ACK SYN & 6 F V f

0 1 1 1 7 BEL ETB 7 G W g

1 0 0 0 8 BS CAN (8 H X h

1 0 0 1 9 HT EM) 9 I V y

1 0 1 0 10 LF SUB . J Z

1 0 1 1 11 VT ESC + K [k

1 1 0 0 12 FF FS < L \ I

1 1 0 1 13 CR GS - = M] m }

1 1 1 0 14 50 RS > N A

1 1 1 1 15 SI US / ? O O DEL

THE ASCII SYMBOLS

NUL -Null
SOH Start of Heading
STX - Start of Text
ETX - End of Text
EOT - End of Transmission

ENQ - Enquiry

ACK Acknowledge
BEL - Bell
BS - Backspace
HT - Horizontal Tabulation
LF - Line Feed

VT Vertical Tabulation CAN - Cancel
FF - Form Feed EM - End of Medium
CR - Carriage Return SUB - Substitute
SO -- Shift Out ESC - Escape
SI Shift In FS - File Separator
DLE - Data Link Escape GS Group Separator
DC - Device Control RS - Record Separator
NAK - Negative Acknowledge US - Unit Separator
SYN - Synchronous Idle SP - Space (Block)
ETB - End of Transmission Block DEL - Delete

APPENDIX 289

290 THE CP/M HANDBOOK WITH MP/M

APPENDIX D

ED CONTROL CHARACTERS

Keys Meaning

CTRL-C (+ C) System restart (warm boot), restores system prompt.

CTRL-E (4 E) Moves cursor to next line to continue command line (with-

out executing or transmitting line).

*CTRL-H (4 H) *Backspaces cursor to erase last character typed.

CTRL-I (4 I) Moves cursor a "tab" space (7 columns long).

*CTRL-J (4 J) *Performs a RETURN.

*CTRL-M (4 M) *Performs a RETURN.

CTRL-L (4 L) Replacement for Carriage Return sequence generated by

RETURN in strings used with search and substitute com-

mands.

*CTRL-R (4 R) Retype current line (types a clean line).

CTRL-U (4 U) Delete current line.

*CTRL-X (4 X) *Backspace to beginning of current line and erase line.

*"CTRL-D (4 D) **Detach the current program from the terminal.

RETURN (J) Transmit (execute) the current line, or generate a Carriage

Return to separate lines of text file.

RUBOUT or DELETE Delete the last character typed (echoes the character).

CTRL-Z (+ Z) Terminate the I command's inserting, or separate strings of

text in search and substitutions, or place as marker at end

of text file.

CTRL-P (4 P) Echo everything typed or displayed at the lineprinter.

CTRL-S (4 5) Temporarily halt a long display (strike any key to continue

display).

BREAK Discontinue execution of currently-executing ED command.

*CP/M 2.2

* *MP/M

APPENDIX 291

292 THE CP/M HANDBOOK WITH MP/M

APPENDIX E

ED COMMANDS

Commands Meaning

nA Append n lines (or 1 line if no n) from the source file to the

edit buffer. A "#" for n will append 65535 lines (fill the

buffer), and a zero for n will append to fill half of the buffer

(number of lines depends on size of your buffer and your

system).

+/-nB Move CP* to beginning if +B, or end if -B of the buffer.

+/-nC Move CP forward (+) n characters or backward (-) n

characters. The CP counts a "carriage return" sequence as

two characters (RETURN and LINE FEED).

+/-nD Delete n characters forward (+), including the CP, or delete

n characters backward (-), not including the CP. If no n,

delete only the character pointed to by CP.

E End ED session normally. The E command saves the buffered

text and the rest of the source file text in a temporary

output file, then renames the output file to the name of the

source file (while copying the source file into a backup

".BAK" file to preserve the original source file). ED then

terminates, bringing back the system.

^Z

nFstring Find the string of characters n times (if no n is specified,

find it once). F searches after the CP in the buffer and moves

CP to the end of the found string. Follow string with Z

terminator if you will add more ED commands; otherwise,

use RETURN to terminate string.

H End ED session, perform an E command, then execute ED

again on the new source file (save your file updates and

return to edit again).

NOTE: you can substitute a "#" character for n in any of the ED commands; it

gives n the highest value it can have -65535.

*CP is the character pointer.

APPENDIX 293

I ^[Insert a new line of text after the CP, moving CP to the end

of last line inserted.

In CP/M 2.2:

- If upper case I is used in the command, all text inserted

will be in upper case only.

- If lower case i is used, then the text will be inserted in

upper and lower case.

)text 4Z Insert characters after the CP, moving CP to the end of last

character inserted.

4 Z

nJstringl + Zstrin g2 + Zstring3 }) rj Juxtapose strings of text by finding()

stringl, inserting string2 at the end of

stringi, and delete all characters up to

but no including string3 (juxtapose all

three strings of text). CP is moved to

the beginning of string3.

+/-nK "Kill" (delete) the fillowing (+) n lines , including the CP

and characters following it on the current line, or delete

the previous (-) n lines including the characters behind

the CP on the current line.

+/-nL Move CP to the beginning of the current line if n is zero;

otherwise, move CP to the beginning of the current line

and move it forward (+) n lines or backward (-) n lines.

4Z
nMstring Repeat execution of the string of ED commands n times, if n

is greater than 1. If n is zero or one, M will execute the

string of commands repeatedly until an error occurs.

^Z

nNtext Search for the nth occurrence of text throughout the buffer

and source file (terminate text with RETURN or Z to add

more commands). N moves the CP to the end of the found

text. N will append source lines until it finds text.

0 Omit ED session and return to original source file.

294 THE CP/M HANDBOOK WITH MP/M

+/-nP Move CP , display and print pages of existing text in buffer.

The n is the number of pages (24 lines per page) printed,

where +n prints n pages following the CP , and -n prints

n pages prior to the CP. OP (zero for n) will print the current

line and page (first 23 lines following the current line). CP

is moved to beginning of the printed page.

Q Quit with no file alterations (leave the temporary file, source

file and buffer file intact). Q returns you to the system. The

".BAK" backup file for the source file is not created, but if

there was a previous " . BAK"file of the some name, it is

deleted . (Watch out for this!)

R Read from the file X$$$$$$$.LIB and insert the lines follow-
ing the CP, moving the CP to the end of the inserted lines

(does not empty the ".LIB" file).

Rfilename Read from the filename .LIB and insert the lines following

the CP, moving the CP to the end of the inserted lines (does

not empty the ".LIB" file).

+Z

nSoldtext + Znewtext Find oldtext in the buffer following CP

and substitute newtext for it; repeat

the sequence n times if n is greater

than one.

+/-nT If n is not specified, or if n is 1, type (display) the characters

following the CP to the end of the line. If n is zero, type

(display) the characters on the current line up to but not in-

cluding the CP . If n is positive (+), display the following n

lines including the current line. If n is negative (-), display

the previous n lines not including the current line, and

display the characters on the current line up to but not in-

cluding the CP. The command sequence "BJ/T" will display

the entire buffer.

+/-U Translate all lower case characters input (typed in or in-

serted) to UPPER CASE if +U, or turn off translation by

executing -U.

V Turn on line number display (line numbers are not actually

in the file) for lines in the buffer.

*CP is the character pointer.

ED COMMANDS 295

0V Display the number of free bytes left in the buffer and the

total memory size of the buffer (in decimal numbers). For

example, in the display "27648/28832", "27648" are the

number of bytes free, and "28832" are the number of bytes,
total, in the current buffer.

nW Write out to the temporary output file with the ".$$$"

extension the following n lines from the CP (including the

current line). If no n, write out only the current line.

nX Copies the following n lines of text to the file X$$$$$$$.LIB

(does not delete original lines). Retrieve lines using R

command. If n is zero, this command will delete the file

X$$$$$$$. LIB.

**nZ Suspend the ED program for n clock ticks (approximately n

seconds).

+/-n Perform a "+/-nLT" command sequence.

n: Move CP to beginning of line number n.

n1 ::n2 Specify a range of line numbers beginning with nl and

ending with n2. If either nl or n2 is missing , substitute for it
"the current line."

*CP is the character pointer.

296 THE CP/M HANDBOOK WITH MP/M

APPENDIX F

PIP DEVICE NAMES

LOGICAL DEVICES

CON: for "console" or terminal , including keyboard and display (Input/Output)

RDR: for paper tape or card reader (input only)

PUN: for paper tape or card punch (output only)

LST: for "listing" device like a line printer (output only).

PHYSICAL DEVICES

TTY: for a console or terminal, a reader, a punch, or a list device.

(teletype)

CRT: for a console or terminal, or list device (Cathode Ray Tube).

PTR: for a paper tape or card reader device.

PTP: for a paper tape or card punch device.

LPT: for a list device (line printer).

UC1: for a user-defined console or terminal.

URI : for a user-defined reader.

UR2: for a second user-defined reader.

UPI: for a user-defined output (punch) device.

UP2: for a second user-defined output (punch) device.

ULl : for a user-defined listing device.

NOTE: BAT: is not included, since it only re-assigns the values for RDR: and LST:

(see "Assigning Devices").

APPENDIX 297

298 THE CP/M HANDBOOK WITH MP/M

APPENDIX G

PIP KEYWORDS

NUL: send 40 "nulls" (ASCII code 0) to the device, usually a punch device for

output. Example, where PROG. HEX is sent to the punch:

*PUN: =PROG.HEX,NULL: J

EOF: send an end-of-file (ASCII 4Z) to the device (sent automatically by PIP

during ASCII text file transfers, and only needed for special cases). Example:

*PUN: =NUL:,X.ASM,EOF:,NULL: J

This example sends 40 nulls to the punch device, followed by a copy of

the file X.ASM, followed by the end-of-file character (4 Z and 40 more

nulls.

PRN: same as LST: (Send to the printer), except that tabs are expanded every

eighth character , lines are numbered (as in the ED program), and page

ejects (form feeds) are inserted every 60 lines (to advance the printer

paper to the next page), with an initial page eject. Example:

*PRN: =SAMPLE.TXT I

INP: special input device code which can be "patched" into the PIP program

itself (you must write the patch in assembly language and add it to PIP).

PIP receives the input character by character by calling a location in

memory (103H) and storing the data starting at location 109H (parity bit

must be zero-use the Z parameter).

OUT: special output device code which can be "patched" into the PIP program

itself, like INP: described above. PIP calls location 106H and sends the

data in register C (each character). Note to assembly language pro-

grammers : locations 109H through 1FFH of PIP memory image ore not

used and can be replaced with code for special-purpose device drivers

(use DDT-the CP/M Debugger supplied by Digital Research with CP/M

or MP/M). Examples:

*GIZMO.CLK=INP: J

(input from special device is stored in file GIZMO. CLK)

*OUT: =GIZMO.CLK J

(copy of GIZMO.CLK is sent to the special device)

APPENDIX 299

300 THE CP/M HANDBOOK WITH MP/M

APPENDIX H

PIP PARAMETERS

B Block mode transfer . PIP puts data in a buffer until it reads an ASCII

"x-off" character (4 S) from the device . PIP then clears the disk

buffer and returns for more data . The size of the buffer depends

on the size of your system (see the documentation provided with

your system). Use this parameter to transfer data from a continuous-

ly reading device like a cassette player or reader . Example:

*ENUFF . TXT=RDR: [B] 1

Dn PIP will delete characters which extend past column n (vertical

columns on your terminal) while copying text files . Use this to
truncate long lines if you are sending a file to a narrow device.
Example:

*PRN: =LONG .TXT[D52] J

E Echo (redisplay) all copy operations on the terminal screen as they

are being performed . Example:

*COPY.TXT=SOURCE.TXT,S2.TXT,S3.TXT,S4.TXT[E] J

F PIP will filter form feeds from the file (i.e., remove them). You

can also use the P parameter to insert new form feeds.

Gn Get file from user area n (CP/M version 2.2 and MP/M).

H Hexadecimal data transfer: PIP checks all data for proper Intel

hexadecimal format (see "Notes About Copying Into Machine-Code
(HEX) Files").

I Ignore ":00" records in the transfer of Intel hex format files (auto-

matically sets the H parameter).

L Translate all upper-case characters to lower-case.

APPENDIX 301

N Add line numbers to each line copied into new file (starting at line

1). Each line number is followed by a colon . Leading zeros (e.g.,

003) are deleted, unless you specify the "N2" parameter. "N2"

leaves the leading zeroes and inserts a tab space after the
numbers. You can expand tab spaces using the T parameter.

0 Object file transfer (for non-ASCII files): PIP ingores the physical

end of the file during concatenation (see "Concatenating Files"

in Chapter 2).

Pn PIP will include page ejects at every n line (with an initial page

eject). If n is 1 (or if you don't specify n), page ejects occur every

60 lines . If you also use the F parameter , PIP removes the form

feeds before inserting page ejects.

Qstring 4Z PIP will quit copying from the device or file when it finds the

string of characters you specify (a string is a group of characters;

e.g., STRING105%). You end your string with a 4Z (CTRL and Z

simultaneously). See "Copying Portions of Files" in Chapter 2.

R Read (copy) system ($SYS) files; also performs a "W" parameter

operation (CP/M version 2.2 and MP/M).

Sstring IZ PIP will start copying from the device or file when it finds the

string of characters you specify. End your string with a + Z. See

"Copying Portions of Files" in Chapter 2.

Tn Expand the tab space to every nth column during the transfer of

text files. You create a tab space in a text file using 4 I; this

parameter will expand the tab space from its usually fixed column

amount.

U Translate all lower -case characters to upper -case during the

copying of the text files.

V PIP will verify that data has been copied correctly by rereading

the new copy file afterwards (copy file cannot be a device) and

displaying a message if the copy was successful.

W Overwrite (delete) read-only files (ignores the $R/O attribute).

(CP/M version 2.2 and MP/M only.)

Z Turn the parity bit to zero on inputs of ASCII characters . Use this

parameter especially if you are inputting from the INP: patch device.

302 THE CP/M HANDBOOK WITH MP/M

Here are examples of PIP expressions with parameters:

*LST: = SAMPLE. TXT [NT8P60] 1

This expression sends the file SAMPLE.TXT to the list device (LST:),

with line numbers , tabs expanded to every eighth character column,
and page ejects at every 60 lines.
NOTE: the PRN: device assumes these parameters ; if the listing device
were assigned to PRN :, the above example could be rewritten:

*PRN: =SAMPLE.TXT 1

PIP PARAMETERS 303

304 THE CP/M HANDBOOK WITH MP/M

APPENDIX I
CP/M (AND MP/M) COMMAND SUMMARY

COMMAND

CP/M CP/M MP/M

VERSION 1.4 VERSION 2.2 VERSION 1

ABORT X

ASM X X X

ATTACH X

CONSOLE X

DDT X X X

DIR X X X

DSKRESET X

DUMP X X X

ED X X X

ERA X X X

ERAQ X

GENHEX X

GENMOD X

GENSYS X X X

LOAD X X X

MOVCPM X X X

MPMLDR X

MPMSTAT X

PIP x x x

APPENDIX 305

COMMAND

CP/M CP/M MP/M

VERSION 1.4 VERSION 2.2 VERSION 1

PRLCOM X

REN X X X

SAVE X X X

SCHED X

SPOOL X

STAT X X X

STOPSPLR X

SUBMIT X X X

SYSGEN X X X

TOD X

TYPE X X X

USER X

XSUB X X

306 THE CP/M HANDBOOK WITH MP/M

APPENDIX J

COMMAND EDITING CONTROLS

COMMON CONTROLS

rubout/delete delete and echo last character

CTRL-U or CTRL-X delete line

CTRL- R retype line

CTRL- E continue on next line

CTRL-C reboot CP/M

OTHERS

CTRL-D detach console (MP/M)

CTRL-H backspace

CTRL-J (line feed) terminate input

CTRL-M (carriage return) terminate command

CTRL- P printer on-off

CTRL-Q secure the printer (MP/M)

CTRL-S stop/restart console output

APPENDIX 307

308 THE CP/M HANDBOOK WITH MP/M

APPENDIX K

EXTENSION TYPES

Extension Type Example

COM Required Command file of a transient PIP.COM

command (program). LOAD.COM

ASM Required for assembly language source PROGI.ASM

(text) files used with ASM command. PATCH.ASM

PRN Required for the listing file of the assembly PROGI.PRN

language program. PATCH.PRN

PRL Required for MP/M relocatable programs. RDT.PRL

HEX Required for program file in "hex" format PROGI.HEX

(machine language), which is ready to be PATCH.HEX

LOADed.

RSP Required for MP/M "resident system pro- SPOOL. RSP

grams."

BAS Required for BASIC program source (text) PROGBAS.BAS

files.

INT Required for BASIC program intermediate PROGBAS.INT

file for execution (already compiled).

BAK Created by ED (text editor) as a backup LETTER.BAK

copy of file before it is altered.

$$$ Temporary (scratch) files created and LETTER.$$$

normally erased by ED and other programs.

SUB Text file with CP/M built-in or transient TRANSFORM.SUB

commands or programs; to be executed

batch style by the SUBMIT program.

APPENDIX 309

310 THE CP/M HANDBOOK WITH MP/M

APPENDIX L

SUPPLIES (CHECKLIST)

q Blank diskettes

q Printwheel

q Ribbons

q Printer paper

q Computer manual

q Printer manual

q CRT terminal manual

q CP/M documentation

q Application programs documentation

q System diskette

q Application programs diskettes

APPENDIX 311

312 THE CP/M HANDBOOK WITH MP/M

APPENDIX M
COMPUTER ROOM ORGANIZATION (CHECKLIST)

q Sufficient ventilation

q No object on computer ventilation outlets

q Non-metallic file holders for diskettes

q Sufficient computer supplies (see separate checklist)

q All required manuals

q Record of correct CRT terminal settings

q Record of correct printer settings

q Maintenance record

q Phone numbers for maintenance and assistance

q No telephone close to work area
(a phone ringing on top of a diskette or a disk drive wipes the
diskette out)

q No screwdrivers close to work area (magnetic)

q No liquids in computer room unless you are well insured

q No smoking in close proximity to disk drives

q No moving or shaking of disk drives

q Posted turn -on procedure

q No static-prone carpeting

APPENDIX 313

314 THE CP/M HANDBOOK WITH MP/M

APPENDIX N
FAILURE CHECKLIST

NOTHING WORKS

q Check mechanical connections:

q Power cords
q Cables
q Switches "on"
q Fuses

PRINTER OUT

q Try the printer in "local"
q Execute CTRL P from the console
q Check all settings
q Re-insert paper properly
q Check fuse

PRINTER DOES NOT STOP

q Hit CTRL P
q Hit CTRL C
q Turn printer off

SYSTEM OUT

q Reboot (CTRL C)
q Stop the system and execute complete restart

DISK DRIVE ON CONTINUOUSLY

q No diskette in. Insert one.
q Remove diskette, restart procedure

GROSSLY ANOMALOUS BEHAVIOR

q Suspect operator error. Try again. Check for correct system diskette
and correct settings on printer.

q Suspect damaged system diskette. Replace with fresh copy.
q Suspect damaged application program. Replace with fresh copy.
q Turn everything off. Try again.
q Suspect hardware failure.

APPENDIX 315

316 THE CP/M HANDBOOK WITH MP/M

APPENDIX 0

BASIC TROUBLESHOOTING RULES

• In this order:

1. Suspect operator error

2. Suspect damaged diskette

3. Suspect software

4. Suspect hardware

• Keep detailed documentation about the failure.

• Try again from scratch. Use fresh diskettes. Check all mechanical

settings and connections.

APPENDIX 317

318 THE CP/M HANDBOOK WITH MP/M

Index

ABORT, 101, 219
Aborting a copy, 119
Active, 91
Active User, 76
Altering CP/M, 197
Altering MP/M, 207
Append, 131
Appending , 151, 163
Applications software, 4
Arguments, 48
ASM, 81, 221
Assembler, 132
Assembling, 81
Assembly language, 42
Assigning devices, 68
ATTACH, 102, 212, 223
Attaching, 102
Attributes, 73, 94
B, 134
Backup, 37
Bank Switched Memory, 107
BAS, 24
BASIC, 26
BDOS , 68, 182 , 185, 194
Binary, 81
BIOS , 182,192
Blanks, 60
Blocked, 91
Blocks, 36, 71
Boot , 13, 194
Bootstrap, 19
Bootstrap loader, 5
Bring up, 8
Bringing up the system, 12
Buffered input, 79
Built-in commands, 61
Byte, 68
BYTS, 71
Carriage return, 13
Cbase, 192
CBASIC, 25
CCP, 78, 183
CDOS, 5, 6, 119
Change the name, 63
Character pointer, 148
Checksum, 133
Cold boot, 19
Cold start, 19
COM, 24
Command files, 24
Commands, 48
Compiler, 26

Computer, 2
Computer system, 1
CON, 68, 123
Concatenation, 130
CONPROC, 6
CONSOLE, 94, 102, 225
Console device, 41
Control blocks, 193
Control characters, 48
Copy, 36
Copying, 110
Copying a diskette, 115
Copying all files, 114
Copying portions of files, 137
CP, 148
CP/M alteration, 203
Cromemco, 6, 15
CRT, 1, 3,126
CTRL, 21
Data, 4
DDT, 86, 225
Debugging, 86
Delayed Process, 105
DELETE, 22
Descriptor , 186, 210
Detaching, 102
Device assignments, 68
DIR, 57, 61, 103, 227
Directory, 23, 61
Disk, 3, 8
Disk drive, 20
Disk operating system, 68, 185
Disk reset, 32
Diskettes, 8
Dispatching, 210
Display, 31, 67
Dn, 134
Dormant, 91
Double-density, 71
DQ, 105
DSK, 75
DSKRESET , 94,99, 229
DUMP , 85, 230
Dumping, 85
E, 134
Echo, 134
ED, 25 , 28, 146, 231
ED's error conditions, 178
Edit buffer, 147
Editor, 25, 145
Editor ' s prompt, 29
EOF, 127

INDEX 319

ERA, 40,64, 232
ERAQ, 103, 234
Erase, 64
Erasing, 40
EX, 71
Executable, 187
Executing, 86
Extension, 24, 58
Extents, 68
F, 135
FCB, 186, 187
FDOS, 191
File, 185
File attribute, 97, 139
File control block, 186
File system, 185
File transfer, 109
File types, 24
Filematch, 58
Filename, 20
Filename match, 37, 58, 114
Filenames, 38, 57, 115
Files, 1, 4, 20
Find and substitute, 170
Flag, 105, 210
Floppy disks, 3, 8
G parameter, 139
GENHEX, 106,236
GENMOD, 94, 106 , 211, 237
GENSYS, 106, 207, 239
GETSYS, 198
GO, 87
H, 85, 135
Hard disks, 8
Hard-copy, 3
Hardware, I
Hazeltine, 123
HEX, 84, 128
HEX Files, 132
Hexadecimal, 130
I, 135
INP, 128
INT, 24, 128
Internal mechanism, 41
Interpreter, 26
Juxtaposition, 177
Keyboard, 3, 21
Kill, 168
L, 135
Language interpreter, 7
Library, 164
Library source file, 176
Line number, 135, 149
LOAD, 85, 190, 241
Loading, 84

LOCAL, 17
Logical device, 123
Logical name, 187
LPT, 70, 126
LST, 40, 69, 123
Machine language, 81
Make file, 193
Making a copy, 34
Managing the disk, 183
Map, 32
Master diskettes, 11
Matching symbols, 112
MBASIC, 42
MDS-800, 191
Memory, 2
Memory allocation, 105, 181, 183
Menu program, 203
MICROSOFT, 42
Mini-diskettes, 11
MOVCPM, 198, 240, 243
MP/M, 209
MP/M Operation, 210
MPMLDR, 245
MPMSTAT, 95, 103, 213, 246
N, 135
NAD, 25
NADENTRY, 25
Notch, 10
NQ, 105
NUL, 127
0,135
Object file transfer, 135
Open file, 193
Operating system, 4
ORG, 211
OUT, 127
Override, 142
Page, 135
Page 0, 183
Pages, 89
Parity, 136
Password, 187
Patch, 197
Peripheral drivers, 183
Physical device, 123, 126
PIP, 34,40, 109, 247
PIP expressions, 121
Pn, 135
Polling process, 105
Power surges, 12
Printer, 3
Printing , 39, 120
Priority level, 90
PRLCOM, 106, 251
PRN, 127

320 THE CP/M HANDBOOK WITH MP/M

Process, 105
Processes, 90
Program, 2, 4
Prompt, 17, 20
PTP, 69, 126
PTR, 126
PUN, 69, 123
PUTSYS, 198
Q, 135
Queue, 93, 105, 210
R/O, 70,139
RAM, 3
RDR, 68, 69, 123
Read-only, 141
Read/write head, 10
Readable, 187
Reconfiguring, 201
Record, 68, 71, 186
RECS, 71
Reference guide, 217
REN, 31, 63, 252
Resident monitor, 5, 19
RETURN, 21
Round-robin, 90
RUBOUT, 22
Rule of thumb, 11
Running a program, 25
5,135
SAVE, 30, 249
Saving, 88
SCHED, 25, 94, 100
Scheduling, 90, 100
Screen, 3
Searching, 175
Sectors, 10
Select a line, 166
Size of files, 71
Software, 1
SOL, 17
Source file, 171
Space allocation, 68
SPOOL, 94,257
Spooler, 93
Spooling, 100

STAT, 67, 68, 259
STOPSPLR, 262
String, 135
SUB, 79
SUBMIT, 76, 263
Substituting, 170
Symbolic name, 187
SYSGEN, 65, 265
System, 4
System Diskette , 1, 13, 23, 65
System reboot, 22

System file, 139
System software, 4
Tab, 136
Tbase, 192
Teletype, 123
Time of day, 101
Time-sharing, 90
Tn, 136
TOD, 94, 101, 267
TPA, 67, 183
Track, 10
Transferring files, 121
Transient commands, 24, 42, 65
Transient Program Area, 42
TTY, 69, 126
Turn off, 43
Type, 187
TYPE, 39, 62, 103, 269
U, 136
UC1, 126
ULI, 126
UP1, 126
UP2, 126
Upper-case, 136
URI, 126
UR2, 126
USER, 96, 270
User areas, 41, 76, 95, 138
User checklist, 43
USR, 76
Utility, 4
V, 136
Verification option, 118
Warm boot, 22, 32
Warm start, 19, 22
Word processor, 146
WORDSTAR, 42
Write-protect, 10
XFER, 6
XSUB, 79, 271
Z, 136
4C, 22, 23, 30, 32, 116, 136
$S,24
+U, 22
fX, 22
f Z, 29, 128, 130
$DIR, 73
$R/O, 73
$R/W, 73
$S,73
$SYS, 73

22, 30
•, 35, 112

112

INDEX 321

SYBEX LIBRARY
AUDIO COURSES

REF. # TITLE

Si Introduction to Microprocessors (2Y2 hours)
S2 Programming Microprocessors (2% hours)
S3 Designing a Microprocessor (2Y2 hours)
SB1 Microprocessors (12 hours)
SB2 Programming Microprocessors (10 hours)
SB3 Military Microprocessor Systems (6 hours)
SB5 Bit-Slice (6 hours)
SB6 Industrial Microprocessor Systems (4% hours)
SB7 Microprocessor Interfacing Techniques (6 hours)
SB10 Introduction to Personal Computing (2Y2 hours)

BOOKS

C200A Your First Computer
C201 Microprocessors: From Chips to Systems
C207 Microprocessor Interfacing Techniques
C280 Programming the Z80
C281 Programming the Z8000
C300 The CP/M Handbook with MP/M

X1 Microprocessor Lexicon
Z10 Microprogrammed APL Implementation

The 6502 Series

C202 Programming the 6502
D302 6502 Applications Book
G402 6502 Games

PASCAL

P310 Introduction to PASCAL
P320 The PASCAL Handbook
BASIC

B245 Inside BASIC Games
B250 Fifty BASIC Exercises

SOFTWARE

BAS 65 BAS 65n'^ Cross Assembler in Basic
S402 6502 Games Cassette
S302 6502 Application Program Cassette
S6580-APL(T) 8080 Simulator for Apple II Cassette
S6580-APL(D) 8080 Simulator for Apple II Diskette
S6580-KIM 8080 Simulator for KIM I Cassette

SELF-STUDY SYSTEMS

CPT ComputeacheriM
CPTG Games BoardTm

F c'C (- '^r6 q

/^ , 5 z. - :s

der:

3 - at- ti -'v z-^:

FOR A COMPLETE CATALOGUE
OF OUR PUBLICATIONS

U.S.A.
2344 Sixth Street

Berkeley, California 94710
Tel: (415) 848-$233

Telex : 336311

EUROPE
,,, 4) - 18 rue Planchat

75020 Paris , France
Tel: (1) 3703275

Telex: 211801

CP/M (Control Program for Microprocessors) is the industry standard in
operating systems for small computers. If you're not using it now, you will be'
soon. CP/M is available on nearly all computers using the 8080, 8085, or Z80
microprocessors, as well as some computers using the 6502 microprocessor.

The OP/M Handbook
with M!S'Y

FOR
FIRST TIME COMPUTER USERS

INPUT TYPISTS
BUSINESS USERS

EXPERIENCED PROGRAMMERS

Simple, clear and practical, THE CP /M HANDBOOK is both an
introduction to the use of CP/M equipped computers and a reference
text.
FOR BEGINNERS this book offers step-by-step instruction for using
CP/M without fear. Everything from
• Turning on the system and
• Inserting a diskette to
• Correct user discipline and
• Remedial action for problem situations
is explained in a clear, concise, easy-to-read format.

EXPEIINENCED PROGRAMMERS will find a comprehensive description
of all CP/M facilities and resources, instructions for advanced operations
and complete discussions of all versions of CP/M up to and including
2.2, MP/M and CDOS. Fifteen appendices feature complete summaries
of all commands and facilities.

No CP/M user should be without The CP /M Handbook.

ABOUT T '<_

Dr. Rodney Zaks has taught courses on programming and microprocessors to
several thousand people worldwide. He received his Ph.D. in Computer Science
from the University of California, Berkeley, developed a microprogrammed APL
implementation, and worked in Silicon Valley, where he pioneered the use of
microprocessors in industrial applications. He has authored several best-selling
books on microcomputers, which are now available in ten different languages.
His writings are based on his technical and teaching experience.

	01 The CPM handbook with MPM
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46
	page 47
	page 48
	page 49
	page 50
	page 51
	page 52
	page 53
	page 54
	page 55
	page 56
	page 57
	page 58
	page 59
	page 60
	page 61
	page 62
	page 63
	page 64
	page 65
	page 66
	page 67
	page 68
	page 69
	page 70
	page 71
	page 72
	page 73
	page 74
	page 75
	page 76
	page 77
	page 78
	page 79
	page 80
	page 81
	page 82
	page 83
	page 84
	page 85
	page 86
	page 87
	page 88
	page 89
	page 90
	page 91
	page 92
	page 93
	page 94
	page 95
	page 96
	page 97
	page 98
	page 99
	page 100
	page 101
	page 102
	page 103
	page 104
	page 105
	page 106
	page 107
	page 108
	page 109
	page 110
	page 111
	page 112
	page 113
	page 114
	page 115
	page 116
	page 117
	page 118
	page 119
	page 120
	page 121
	page 122
	page 123
	page 124
	page 125
	page 126
	page 127
	page 128
	page 129
	page 130
	page 131
	page 132
	page 133
	page 134
	page 135
	page 136
	page 137
	page 138
	page 139
	page 140
	page 141
	page 142
	page 143
	page 144
	page 145
	page 146
	page 147
	page 148
	page 149
	page 150
	page 151
	page 152
	page 153
	page 154
	page 155
	page 156
	page 157
	page 158
	page 159
	page 160
	page 161
	page 162
	page 163
	page 164
	page 165
	page 166
	page 167
	page 168
	page 169
	page 170
	page 171
	page 172
	page 173
	page 174
	page 175
	page 176
	page 177
	page 178
	page 179
	page 180
	page 181
	page 182

	02 The CPM handbook with MPM
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46
	page 47
	page 48
	page 49
	page 50
	page 51
	page 52
	page 53
	page 54
	page 55
	page 56
	page 57
	page 58
	page 59
	page 60
	page 61
	page 62
	page 63
	page 64
	page 65
	page 66
	page 67
	page 68
	page 69
	page 70
	page 71
	page 72
	page 73
	page 74
	page 75
	page 76
	page 77
	page 78
	page 79
	page 80
	page 81
	page 82
	page 83
	page 84
	page 85
	page 86
	page 87
	page 88
	page 89
	page 90
	page 91
	page 92
	page 93
	page 94
	page 95
	page 96
	page 97
	page 98
	page 99
	page 100
	page 101
	page 102
	page 103
	page 104
	page 105
	page 106
	page 107
	page 108
	page 109
	page 110
	page 111
	page 112
	page 113
	page 114
	page 115
	page 116
	page 117
	page 118
	page 119
	page 120
	page 121
	page 122
	page 123
	page 124
	page 125
	page 126
	page 127
	page 128
	page 129
	page 130
	page 131
	page 132
	page 133
	page 134
	page 135
	page 136

